scholarly journals Formulation, characterization, evaluation and in vitro study of transfersomal gel medroxyprogesterone acetate for transdermal drug delivery

2020 ◽  
Vol 11 (4) ◽  
pp. 5373-5381
Author(s):  
Iskandarsyah ◽  
Camelia Dwi Putri Masrijal ◽  
Harmita

A hormonal contraception progestin such as medroxyprogesterone acetate (MPA) is used to helps regulate ovulation thus as a part of contraception hormone therapy as a method of birth control. This study aimed to formulate, characterized, evaluated transfersomal gel containing medroxyprogesterone acetate and to increased subcutaneous penetration of medroxyprogesterone acetate. In this research, three transfersomes formulas were prepared and optimized, e.g. F1, F2 and F3 with phosphatidylcholine: tween 80 concentration were 90:10; 85:15; and 75:25, respectively. F2 was the best formula with the highest entrapment efficiency 81.20±0.42 %, Average 81.35 ±0.78 nm, morphology of vesicles were spheres, indeks polidispersity 0.198±0.012 and zeta potential was -34.83±0.64 mV. The transpersonal gel (FGT) containing F2, and non-transpersonal gel containing MPA in methanol(FG) were prepared. In vitro penetration test were conducted to both of them using Franz Diffusion cells. Analysis of medroxyprogesterone acetate used a high performance liquid chromatographic (HPLC) method with an ultraviolet detector on reversed-phase C18, 5µm; 150 x 4.6 mmcolumn; using acetonitrile-0.1% formic acid (60:40/v:v) and was detected at a wavelength of 240 nm with flow rate at 1.0 mL/min. Gel stability evaluation results showed that FGT was better than FG on pH stability, viscosity and rheological properties. Based on in vitro penetration study, cumulative subcutaneous penetration of medroxyprogesterone acetate from FGT was 2356.45 ± 197.73 ng.cm-2 and from FG 359.15 ± 13.60 ng.cm-2, respectively. Flux value for FGT and FG were 112.77 ± 6,47 ng.cm-2.hr-1and 17.99 ± 4.81 ng.cm-2.hr-1, respectively. It could be concluded that transfersomal gel medroxyprogesterone acetate for transdermal drug delivery increased cumulative transdermal penetration of medroxyprogesterone acetate by six times more than non-transfersomal gel dosage form.

Author(s):  
NURFITRIYANA NURFITRIYANA ◽  
HARMITA HARMITA ◽  
ISKANDARSYAH ISKANDARSYAH

Objective: Lynestrenol, a progestin hormone derivative, can suppress the productions of endogenous estrogen and progesterone hormones (ovaries)to prevent ovulation. In this study, lynestrenol was included in various transfersomal gel preparations for its transdermal delivery into fat (F)-andnon-fat (NF)-containing skin tissues.Methods: Lynestrenol transfersome vesicles were prepared by encapsulating the drug in varied concentrations of phosphatidylcholine and Tween80 using lipid film hydration method. Transfersomes were produced in the form of gel preparations at a dose of 0.15 mg/week and evaluated fortheir particle size, percentage of entrapment efficiency, and particle polydispersity. We performed in vitro evaluations of the formulation variants F0(lynestrenol gel control) and F1 and F2 (lynestrenol transfersome gels) with variations in their phosphatidylcholine and Tween 80 content. We thenperformed an in vitro evaluation using the Franz diffusion cell (FDC) method for 12 h using all three formulations on F and NF-containing rat skin.Results: The FDC results demonstrated that lynestrenol was deposited into fat tissue and increased concentrations of Tween 80 (edge activator)increased lynestrenol delivery into this tissue. In addition, the percentages of drug penetration from NF rat skin treated with F0, F1, and F2 gels were19.56%, 20.13%, and 20.56%, respectively, and those from F rat skin were 17.16%, 17.38%, and 17.50%, respectively.Conclusion: In vitro evaluation using the FDC method indicates that transdermal drug delivery through to fat tissues using transfersomes is apromising method for lynestrenol delivery.


Author(s):  
G D Chandrethiya ◽  
P K Shelat ◽  
M N Zaveri

PEGylated gelatin nanoparticles loaded with colchicine were prepared by ethanol precipitation method. Poly-(ethylene glycol)-5000-monomethylether (MPEG 5000), a hydrophilic polymer, was used to pegylate gelatin.  Gluteraldehyde was used as cross-linking agent. To obtain a high quality product, major formulation parameters were optimized.  Spherical particles with mean particles of 193 nm were measured by a Malvern particle size analyzer. Entrapment efficiency was found to be 71.7 ± 1.4% and determined with reverse phase high performance liquid charomatography (RP-HPLC). The in vitro drug release study was performed by dialysis bag method for a period of 168 hours. Lyophilizaton study showed sucrose at lower concentrations proved the best cryoprotectant for this formulation.  Stability study revealed that lyophilized nanoparticles were equally effective (p < 0.05) after one year of storage at 2-8°C with ambient humidity. In vitro antitumoral activity was accessed using the MCF-7 cell line by MTT assay.  The IC50 value was found to be 0.034 μg/ml for the prepared formulation. The results indicate that PEGylated gelatin nanoparticles could be utilized as a potential drug delivery for targeted drug delivery of tumors.  


Author(s):  
ISKANDARSYAH ISKANDARSYAH ◽  
CAMELIA DWI PUTRI MASRIJAL ◽  
HARMITA HARMITA

Objective: The aim of this study was to develop transferosome vesicles for the transdermal drug delivery of lynestrenol.Methods: The lynestrenol transferosome vesicle was made by encapsulating the drug in a variation of phosphatidylcholine and Tween 80 by the thinlayerhydration method. The resulting transferosome vesicles were modified with a time variation of 30, 60, 90, and 120 min, and sonication variationswere paused and not paused. Particle size evaluation, polydispersity (PDI), and entrapment efficiency (%EE) were carried out on the variation ofsonication time.Results: The evaluation results showed that sonication without pauses showed better %EE and particle size than sonication with pauses andincreasing concentration of Tween 80 (edge activator). The %EE increased, and particle size decreased with increasing sonication time; PDI of vesicleswas heterogeneous with increasing sonication time. The %EE in formulas F1 and F2 after 120 min was 73.06% and 76.06% (paused) and 80.40% and82.97% (without paused). The particle size of formula F1 and F2 after 120 min 575.4 nm and 471.6 nm (paused) and 524.1 nm and 434.7 nm (withoutpaused). The PDI formulas of F1 and F2 after 120 min were 0.69 and 0.763 (paused) and 0.84 and 0.59 (without paused).Conclusion: Based on the results of the transferosome vesicle characteristics, it was shown that the optimal vesicle composition for packaginglynestrenol was vesicles that were composed of phosphatidylcholine and Tween 80 without pauses and could potentially be used as a transdermaldrug delivery system.


Author(s):  
John Fanikos ◽  
Kathleen Marquis ◽  
Leo Francis Buckley ◽  
Lena Kim Tran ◽  
Kevin C McLaughlin ◽  
...  

Introduction Ultrasound-facilitated catheter-directed thrombolysis is used with low-dose alteplase to treat pulmonary embolism. This reduces the bleeding risk that accompanies systemic administration of higher alteplase doses. While studies suggest that alteplase given over 2 to 6 hours is safe and effective, few data exist to support alteplase stability under these conditions. Therefore, we undertook this in vitro study to determine the duration of alteplase stability. Methods Alteplase was prepared in solutions of 8 mg in 100 mL, 6 mg in 150 mL, and 8 mg in 200 mL. Solutions were administered through the EkoSonicTM Endovascular System with and without ultrasound, to simulate administration over 2, 4, and 6 hours. Alteplase was assessed with reversed-phase high-performance liquid chromatography (RP-HPLC). Assays were performed at time 0 and at 30-minute intervals during simulated infusion. An enzyme-linked immunosorbent assay (ELISA) assay was used to measure alteplase concentrations that were at time 0 and at 15-minute intervals during simulated infusion. Results Using RP-HPLC, in the absence of ultrasound, the alteplase concentration remained within 1% of the original concentration through 120, 240, and 360 minutes of infusion. Using RP-HPLC for measurement, alteplase, in the presence of ultrasound, degraded steadily over time to approximately 90%, 80%, and 70% of its original amounts in 120, 240, and 360 minutes, respectively. Alteplase that remained was available for enzymatic activity. Conclusions Alteplase solutions of 0.04 and 0.08 mg/mL degraded steadily over time during simulated ultrasound-facilitated catheter-directed administration. Alteplase that did not degrade remained available for enzymatic activity.


Author(s):  
Risvana Iqubal ◽  
Vimal Mathew ◽  
Kumar M. ◽  
Najiya Nasri K. V. ◽  
Safeetha Shamsudheen ◽  
...  

The poor penetration rate of the skin as a natural barrier makes transdermal drug delivery problematic. To increase transdermal dispersion of bioactives, electrophoresis, iontophoresis, chemical permeation enhancers, microneedles, sonophoresis, and vesicular systems such as liposomes, niosomes, elastic liposomes such as ethosomes, and transferosomes have all been used. Among these, transferosomes appear to be a promising option. Transferosomes are elastomeric or deformable vesicles that were originally discovered in the early 1990s. They're novel vesicular drug carrier system composed of phospholipid, surfactant, and water that improves transdermal drug delivery. Because of their low toxicity, biodegradability, ability to encapsulate both hydrophilic and lipophilic molecules, ability to prolong the drug's existence in the systemic circulation by encapsulation in vesicles, ability to target organs and tissues, and ability to reduce drug toxicity while increasing bioavailability, these vesicles are preferred over others. These vesicles undergo deformation, changes its shape and easily penetrates through the skin pores. There are two phases in any technique for preparing transferosomes. First, a thin film is hydrated before being sonicated to the required size; next, sonicated vesicles are homogenized by extrusion through a polycarbonate membrane. Transferosomes are evaluated for its entrapment efficiency, their drug content , in-vitro drug release, degree of deformability, turbidity, surface charge and morphology. Transferosomes are said to have a number of applications like delivery of vaccines,proteins, Anti-cancer drugs,anesthetics,herbal drugs and has better patient compliance,improved bio-availability and site-specific delivery and can serve as an emerging tool for transdermal delivery of almost all drugs and bio-actives.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3345
Author(s):  
Taif Ali Khan ◽  
Abul Kalam Azad ◽  
Shivkanya Fuloria ◽  
Asif Nawaz ◽  
Vetriselvan Subramaniyan ◽  
...  

The purpose of the present study was to develop emulsions encapsulated by chitosan on the outer surface of a nano droplet containing 5-fluorouracil (5-FU) as a model drug. The emulsions were characterized in terms of size, pH and viscosity and were evaluated for their physicochemical properties such as drug release and skin permeation in vitro. The emulsions containing tween 80 (T80), sodium lauryl sulfate, span 20, and a combination of polyethylene glycol (PEG) and T20 exhibited a release of 88%, 86%, 90% and 92%, respectively. Chitosan-modified emulsions considerably controlled the release of 5-FU compared to a 5-FU solution (p < 0.05). All the formulations enabled transportation of 5-FU through a rat’s skin. The combination (T80, PEG) formulation showed a good penetration profile. Different surfactants showed variable degrees of skin drug retention. The ATR-FTIR spectrograms revealed that the emulsions mainly affected the fluidization of lipids and proteins of the stratum corneum (SC) that lead to enhanced drug permeation and retention across the skin. The present study concludes that the emulsions containing a combination of surfactants (Tween) and a co-surfactant (PEG) exhibited the best penetration profile, prevented the premature release of drugs from the nano droplet, enhanced the permeation and the retention of the drug across the skin and had great potential for transdermal drug delivery. Therefore, chitosan-coated 5-FU emulsions represent an excellent possibility to deliver a model drug as a transdermal delivery system.


Author(s):  
CAMELIA DWI PUTRI MASRIJAL ◽  
HARMITA HARMITA ◽  
ISKANDARSYAH ISKANDARSYAH

Objective: Medroxyprogesterone Acetate (MPA) using a transdermal drug delivery system for contraception by passive diffusion is limited by the skin barrier properties. Penetration enhancers such as olive oil (fatty acid permeation enhancer) and DMSO (chemical enhancer) can be used. The objective of this study was to overcome MPA penetration problem by using olive oil and DMSO. Methods: An in vitro penetration study using the Franz diffusion cells was performed. The first penetration study used MPA in olive oil (O) and MPA in coconut oil (C) with the concentration 100 μg/ml to each sample and MPA suspension as a control with the same concentration. The second study used MPA in olive oil with the concentration 200.0 μg/ml (A), MPA in olive oil with 0.5% DMSO with the concentration 200.0 μg/ml (B), and MPA in olive oil with 1% DMSO with the concentration 200 μg/ml (C). Results: MPA penetration test for olive oil+0.5% DMSO had flux value 4.24±0.074 μg/cm2. hr and it was not significantly different (t-test, P>0.05) with olive oil+1% DMSO. While the MPA penetration test in only Olive oil had flux value 0.90±0.0087 μg/cm2. hr. Conclusion: This research concluded that olive oil and 0.5% DMSO could improve the penetration of MPA into skin membrane by 4.5 times more than olive oil alone.


2021 ◽  
Vol 2 (1) ◽  
pp. 116-126
Author(s):  
Neha Rani ◽  
Rupali Rana ◽  
Reena Thakur ◽  
Shivali Singla ◽  
Sachin Goyal

Atorvastatin calcium is a HMG-CoA reductase inhibitor used for the treatment of hyperlipidaemia. It has oral bioavailability of ≤12 %. It also undergoes high first pass metabolism. It is highly soluble in acidic pH and absorbed more in the upper part of the gastrointestinal tract. In order, to improve the absorption and its oral bioavailability, niosomes of Atorvastatin calcium have been formulated and evaluated on different parameters. Niosomes play an increasingly important role in drug delivery as they can reduce toxicity and 000000000modify pharmacokinetic and bio-availability. Niosomes formulations of Atorvastatin calcium were successfully developed by thin film hydration technique using nonionic surfactant i.e. Span 40, Span 60 Span 80, Tween 20, Tween 40, Tween 80 and cholesterol at different concentrations. The formulations were evaluated for size, shape, and entrapment efficiency. In-vitro release and stability studies also performed. Results indicated that Niosomes were prepared succesfully work as promising drug carriers and promising drug delivery module.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Amina Ben Saad ◽  
Mohamed Tiss ◽  
Henda Keskes ◽  
Anisa Chaari ◽  
Maria Eleni Sakavitsi ◽  
...  

Methanol and methanol/water extracts of olive stones and seeds from Olea europaea var. meski were analyzed by reversed-phase high-performance liquid chromatography (HPLC) with diode array detection and mass spectrometry (LC-MS/MS). A total of 28 metabolites were identified; among them are hydroxycinnamic acid derivatives, phenolic alcohols, flavonoids and flavonoid glucosides, secoiridoids, and terpenes. All the extracts were screened for the inhibitory effect of key enzymes related to diabetes and obesity, such as α-amylase and lipase. An in vitro study revealed that Olea meski stone ethanol (MSE) and methanol (MSM) extracts and Olea meski seed ethanol (MSE1) and methanol (MSM1) extracts exert an inhibitory action against lipase and α-amylase. The most potent activity was observed in the StM extract with IC50 equal to 0.19 mg/ml against DPPH oxidation, 1.04 mg/ml against α-amylase, and 2.13 mg/ml against lipase. In HFFD rats, the findings indicated that the increase of body weight, LDL, TC, and glucose levels and then the decrease in HDL-C were significantly suppressed in the MSM-treated group than those in HFFD rats. Moreover, the MSM extract exhibited a prominent selective inhibitory effect against intestinal lipase and α-amylase activities. The MSM extract was also able to protect the liver-kidney functions efficiently, which was evidenced by biochemicals and histological studies.


2011 ◽  
Vol 194-196 ◽  
pp. 537-540 ◽  
Author(s):  
Sureewan Duangjit ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat

The aim of this study was to prepare and investigate the potential use of liposomes in the transdermal drug delivery of meloxicam (MX). The vesicles containing a constant amount of MX, phosphatidylcholine (PC), cholesterol (Chol) and cetylpyridinium chloride (CPC) (1:5:1:1 MX/PC/Chol/CPC molar ratio) to obtain liposomes. MX loaded liposomes were investigated for particle size, zeta potential, entrapment efficiency (%EE) and in vitro skin permeation. The results indicated that the liposomes were spherical in structure, 77 to 100 nm in size and charged. The %EE of MX in the vesicles ranged from 55 to 56%. The elastic liposomes consisting of MX/PC/Chol/CPC provided a significantly higher skin permeation of MX compared to the other formulations. Fourier Transform Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) analysis indicated that the application of liposomes may disrupt the stratum corneum lipid. Our research suggests that MX loaded elastic liposomes can be potentially used as a transdermal drug delivery system.


Sign in / Sign up

Export Citation Format

Share Document