Scalable Fabrication of Bi2O2Se Polycrystalline Thin Film for Near-infrared Optoelectronic Devices Applications

2021 ◽  
Author(s):  
Bin Liu ◽  
Hong Zhou
2005 ◽  
Vol 865 ◽  
Author(s):  
X. Wu ◽  
J. Zhou ◽  
A. Duda ◽  
J. C. Keane ◽  
T.A. Gessert ◽  
...  

AbstractTo fabricate a high-efficiency polycrystalline thin-film tandem cell, the most critical work is to make a high-efficiency top cell (>15%) with high bandgap (Eg=1.5-1.8 eV) and high transmission (T>70%) in the near-infrared (NIR) wavelength region. The CdTe cell is one of the candidates for the top cell, because CdTe state-of-the-art single-junction devices with efficiencies of more than 16% are available, although its bandgap (1.48 eV) is slightly lower for a top cell in a dual-junction device. In this paper, we focus on the development of an ultra-thin, low-bandgap CuxTe transparent back-contact to produce high-efficiency CdTe cells with high NIR transmission. We have achieved an NREL-confirmed 13.9%-efficient CdTe transparent solar cell with an infrared transmission of ~50% and a CdTe/CIS polycrystalline mechanically stacked thin-film tandem cell with an NREL-confirmed efficiency of 15.3%.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1380
Author(s):  
Marwa M. Tharwat ◽  
Ashwag Almalki ◽  
Amr M. Mahros

In this paper, a randomly distributed plasmonic aluminum nanoparticle array is introduced on the top surface of conventional GaAs thin-film solar cells to improve sunlight harvesting. The performance of such photovoltaic structures is determined through monitoring the modification of its absorbance due to changing its structural parameters. A single Al nanoparticle array is integrated over the antireflective layer to boost the absorption spectra in both visible and near-infra-red regimes. Furthermore, the planar density of the plasmonic layer is presented as a crucial parameter in studying and investigating the performance of the solar cells. Then, we have introduced a double Al nanoparticle array as an imperfection from the regular uniform single array as it has different size particles and various spatial distributions. The comparison of performances was established using the enhancement percentage in the absorption. The findings illustrate that the structural parameters of the reported solar cell, especially the planar density of the plasmonic layer, have significant impacts on tuning solar energy harvesting. Additionally, increasing the plasmonic planar density enhances the absorption in the visible region. On the other hand, the absorption in the near-infrared regime becomes worse, and vice versa.


Author(s):  
Mohamed H. Abdel‐Aziz ◽  
Mohammed Zwawi ◽  
Ahmed F. Al‐Hossainy ◽  
Mohamed Sh. Zoromba

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Caroline E. Reilly ◽  
Stacia Keller ◽  
Shuji Nakamura ◽  
Steven P. DenBaars

AbstractUsing one material system from the near infrared into the ultraviolet is an attractive goal, and may be achieved with (In,Al,Ga)N. This III-N material system, famous for enabling blue and white solid-state lighting, has been pushing towards longer wavelengths in more recent years. With a bandgap of about 0.7 eV, InN can emit light in the near infrared, potentially overlapping with the part of the electromagnetic spectrum currently dominated by III-As and III-P technology. As has been the case in these other III–V material systems, nanostructures such as quantum dots and quantum dashes provide additional benefits towards optoelectronic devices. In the case of InN, these nanostructures have been in the development stage for some time, with more recent developments allowing for InN quantum dots and dashes to be incorporated into larger device structures. This review will detail the current state of metalorganic chemical vapor deposition of InN nanostructures, focusing on how precursor choices, crystallographic orientation, and other growth parameters affect the deposition. The optical properties of InN nanostructures will also be assessed, with an eye towards the fabrication of optoelectronic devices such as light-emitting diodes, laser diodes, and photodetectors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Animesh Pandey ◽  
Reena Yadav ◽  
Mandeep Kaur ◽  
Preetam Singh ◽  
Anurag Gupta ◽  
...  

AbstractTopological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.


Author(s):  
Harin S. Ullal ◽  
Kenneth Zweibel ◽  
Richard L. Mitchell ◽  
Rommel Noufi

2005 ◽  
Vol 8 (8) ◽  
pp. G209
Author(s):  
Chun-Hao Tu ◽  
Ting-Chang Chang ◽  
Po-Tsun Liu ◽  
Hsiao-Wen Zan ◽  
Ya-Hsiang Tai ◽  
...  

2006 ◽  
Vol 320 ◽  
pp. 113-116
Author(s):  
Shigeru Tanaka ◽  
Yukari Ishikawa ◽  
Naoki Ohashi ◽  
Junichi Niitsuma ◽  
Takashi Sekiguchi ◽  
...  

We have obtained Er-doped ZnO thin film in a micropattern of reverse trapezoids processed on Si substrate by sputtering and ultrafine polishing techniques. Near-infrared light emission was detected successfully from the thin film filling a single micropit with 10 μm square. Transmission electron microscopy (TEM) observation showed epitaxial growth of ZnO crystals along the curvature of the micropit.


Sign in / Sign up

Export Citation Format

Share Document