The role of ICP-MS in inorganic chemical metrology

Metrologia ◽  
2019 ◽  
Vol 56 (3) ◽  
pp. 034005 ◽  
Author(s):  
M Sargent ◽  
H Goenaga-Infante ◽  
K Inagaki ◽  
L Ma ◽  
J Meija ◽  
...  
2021 ◽  
Vol 9 (2) ◽  
pp. 151-163
Author(s):  
Edgardo O. Alvarez ◽  
Osvaldo J. Sacchi ◽  
Silvia G. Ratti

Living organisms live in continuous interaction with its environment. During this process changes in one can induce adaptive responses on the other. Many factors in the environment have been studied with the notorious distinction of been rare or to be of high intensity strength in its interaction with living organisms. However, little attention has been put on some factors that have constant interaction with organisms but usually have low intensity strength, such as the case of the inorganic chemical environment that surrounds us. In this review, the interaction between the chemical element and living organisms is discussed under a theoretical model of interaction between compartments, giving attention to tellurium (Te), zinc (Zn) and selenium (Se) on some cognitive functions in human and animals. After studies in our laboratory of the phenotypic expression of the HSR (Hand Skill Relative) gene in school children community living in geographic zone rich in minerals and mines of La Rioja province, Argentine, where Te was found to be in higher non-toxic concentrations, a translational experimental model to maturing rats exposed to this trace element was made. Te was found to increase some parameters related to locomotion in an open field induced by novelty and exploratory motivation. At the same time, inhibition of lateralized responses, survival responses and social activity was also observed. Some of these changes, particularly those related to lateralization had similarity with that found previously in children of La Rioja province. Discussion of similarities and discrepancies of biologic effects between animals and humans, about the possible meaning of Te and its interaction with Zn and Se with relevance to humans was analyzed.


2008 ◽  
Vol 153 (3) ◽  
pp. 1157-1164 ◽  
Author(s):  
I ARAUZ ◽  
S AFTON ◽  
K WROBEL ◽  
J CARUSO ◽  
J CORONA ◽  
...  

2014 ◽  
Vol 29 (2) ◽  
pp. 339-346 ◽  
Author(s):  
Prasoon K. Diwakar ◽  
Jhanis J. Gonzalez ◽  
Sivanandan S. Harilal ◽  
Richard E. Russo ◽  
Ahmed Hassanein

2003 ◽  
Vol 1 (3) ◽  
Author(s):  
B. Zlateva ◽  
R. Djingova ◽  
I. Kuleff

AbstractThe possibility of using inductively coupled plasma atomic emission spectrometry (ICP-AES) to determine the elemental composition of archaeological bones elements was evaluated and discussed. The interferences of the major elements (Ca, P, K, Na, Al and Fe) on the microelements (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn) were investigated and the appropriate analytical lines were selected. The role of different nebulizers (cross-flow, Babington and Meinhard) on detection limits were investigated. The applicability of the proposed procedure was demonstrated analyzing IAEA-SRM-H-5 (Animal bone); and authentic bone sample dating back to the 4th century BC. These results were compared to ETAAS and ICP-MS.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 560
Author(s):  
Laura M. Cole ◽  
Joshua Handley ◽  
Emmanuelle Claude ◽  
Catherine J. Duckett ◽  
Hardeep S. Mudhar ◽  
...  

Matrix assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI), was used to obtain images of lipids and metabolite distribution in formalin fixed and embedded in paraffin (FFPE) whole eye sections containing primary uveal melanomas (UM). Using this technique, it was possible to obtain images of lysophosphatidylcholine (LPC) type lipid distribution that highlighted the tumour regions. Laser ablation inductively coupled plasma mass spectrometry images (LA-ICP-MS) performed on UM sections showed increases in copper within the tumour periphery and intratumoural zinc in tissue from patients with poor prognosis. These preliminary data indicate that multi-modal MSI has the potential to provide insights into the role of trace metals and cancer metastasis.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 907 ◽  
Author(s):  
Dmitry Vlasov ◽  
Jessica Vasil’chuk ◽  
Natalia Kosheleva ◽  
Nikolay Kasimov

Concentrations and ratio of dissolved and suspended forms of metals and metalloids (MMs) in snow cover and their deposition rates from the atmosphere in the western part of Moscow were studied. Forms of MMs were separated using a filter with pore diameter of 0.45 μm; their concentrations were measured by ICP-MS and ICP-AES methods. Anthropogenic impact in Moscow caused a significant increase in dust load (2–7 times), concentration of solid particles in snow cover (2–5 times), and mineralization of snow meltwater (5–18 times) compared to the background level. Urban snow contains Sn, Ti, Bi, Al, W, Fe, Pb, V, Cr, Rb, Mo, Mn, As, Co, Cu, Ba, Sb, Mg mainly in suspended form, and Ca and Na in dissolved form. The role of suspended MMs in the city significantly increases compared to the background region due to high dust load, usage of de-icing salts, and the change of acidic background conditions to alkaline ones. Anthropogenic emissions are the main sources of suspended Ca, W, Co, V, Sr, Ti, Mg, Na, Mo, Zn, Fe, Sb, and Cu in the snow cover of traffic zone. These elements’ concentrations in roadside snow cover exceed the background values more than 25 times. The highest concentrations and deposition rates of MMs in the snow of Moscow are localized near the large and medium roads.


2021 ◽  
Author(s):  
Ingrid Urban ◽  
Sylvain Richoz

<p>The End-Triassic Mass Extinction (ETME) is one of the five major mass extinctions of the Phanerozoic. The deposition of ooids is atypically high in the direct aftermath of major extinction events, including the ETME. Ooids were intensively investigated both petrographically and sedimentologically in the past decades; but only recently their potentialities as archives for the original chemical composition of the oceans where they formed, have gained awareness. Here we present stratigraphical, sedimentological and geochemical aspects for a mid-Norian-Hettangian section from the Emirates.</p><p>Petrographic analyses provided a detailed morphological classification of post-ETME coated grains, supported by point counting of two isochronous geological sections. FE-SE-EDX imaging unraveled peculiar µm-scale features linked to morphology, diagenesis and biotic interaction in the cortex. LA-ICP-MS analyses were performed for specific major and trace elements. Post-extinction oolites show high variability in size and development of the cortex. They range from small (~ 300 µm) and superficial coating, to bigger (up to 800 µm) and well developed. The degree of micritization highlights different oxic conditions in the diagenetic environment. LA-ICP-MS analyses give insights into seawater redox conditions during ooids formation, siliciclastic contamination, diagenetic processes and the role of bacterial strain in shaping the ooids. Petrographical and geochemical data point out to a calcitic deposition of these ooids as odd with the general consideration that the Late Triassic to Early Jurassic was part of the Aragonite sea. This has major implication on the understanding of the carbonate saturation in the oceans just after the mass-extinction and on the interpretation of several proxies as the C and Ca isotope-system.</p><p> </p><p> </p>


2020 ◽  
Author(s):  
Johannes Hammerli

<p>The long-lived radiogenic isotope systems Lu-Hf and Sm-Nd have been widely used by geochemists to study magma sources and crustal residential times of (igneous) rocks in order to understand how early crust formed and to model the production rate and volume of continental crust on global and regional-scales during the last ~4.4 Ga. However, while throughout most of Earth’s history Nd and Hf isotope signatures in terrestrial rocks are well correlated due to their very similar geochemical behavior, some of Earth’s oldest rocks show an apparent inconsistency in their Nd and Hf isotope signatures. While Hf isotopes in early Archean rocks are generally (near) chondritic, Nd isotope signatures can be distinctly super- or sub-chondritic. The super-chondritic Nd isotope values in Eoarchean samples would suggest that these rocks are derived from a mantle reservoir depleted by prior crust extraction. The chondritic Hf isotope values, on the other hand, support a mantle source from which no significant volume of crust had been extracted. While a range of different processes, some of them speculative, might explain this Hf-Nd isotope paradox, recent research [1, 2] has shown that relatively simple, post-magmatic, open-system processes can explain decoupling of the typically correlative Hf-Nd isotope signatures. This talk will focus on the importance of identifying Nd-bearing accessory minerals in (Archean) rocks to understand how the Sm-Nd isotope system is controlled and how in situ isotope and trace element analyses by LA-(MC)-ICP-MS in combination with detailed petrographic observations help to understand when and via which processes the two isotope systems become decoupled. Reconstructing the isotopic evolution of the different isotope systems since formation of the protoliths has important implications for our understanding of early crust formation and questions some of the proposed current models for early crust extraction from the mantle.</p><p> </p><p>[1] Hammerli et al. (2019) Chem. Geol 2; [2] Fisher et al. (2020) EPSL</p>


Sign in / Sign up

Export Citation Format

Share Document