scholarly journals Satellite Spoofing Identification Method Based on Radio Frequency Feature Extraction

2018 ◽  
Vol 1069 ◽  
pp. 012079
Author(s):  
Yu Jiang ◽  
Yuexiu Xing
2020 ◽  
Vol 10 (19) ◽  
pp. 6885
Author(s):  
Sahar Ujan ◽  
Neda Navidi ◽  
Rene Jr Landry

Radio Frequency Interference (RFI) detection and characterization play a critical role in ensuring the security of all wireless communication networks. Advances in Machine Learning (ML) have led to the deployment of many robust techniques dealing with various types of RFI. To sidestep an unavoidable complicated feature extraction step in ML, we propose an efficient Deep Learning (DL)-based methodology using transfer learning to determine both the type of received signals and their modulation type. To this end, the scalogram of the received signals is used as the input of the pretrained convolutional neural networks (CNN), followed by a fully-connected classifier. This study considers a digital video stream as the signal of interest (SoI), transmitted in a real-time satellite-to-ground communication using DVB-S2 standards. To create the RFI dataset, the SoI is combined with three well-known jammers namely, continuous-wave interference (CWI), multi- continuous-wave interference (MCWI), and chirp interference (CI). This study investigated four well-known pretrained CNN architectures, namely, AlexNet, VGG-16, GoogleNet, and ResNet-18, for the feature extraction to recognize the visual RFI patterns directly from pixel images with minimal preprocessing. Moreover, the robustness of the proposed classifiers is evaluated by the data generated at different signal to noise ratios (SNR).


2021 ◽  
Vol 13 (15) ◽  
pp. 2901
Author(s):  
Zhiqiang Zeng ◽  
Jinping Sun ◽  
Congan Xu ◽  
Haiyang Wang

Recently, deep learning (DL) has been successfully applied in automatic target recognition (ATR) tasks of synthetic aperture radar (SAR) images. However, limited by the lack of SAR image target datasets and the high cost of labeling, these existing DL based approaches can only accurately recognize the target in the training dataset. Therefore, high precision identification of unknown SAR targets in practical applications is one of the important capabilities that the SAR–ATR system should equip. To this end, we propose a novel DL based identification method for unknown SAR targets with joint discrimination. First of all, the feature extraction network (FEN) trained on a limited dataset is used to extract the SAR target features, and then the unknown targets are roughly identified from the known targets by computing the Kullback–Leibler divergence (KLD) of the target feature vectors. For the targets that cannot be distinguished by KLD, their feature vectors perform t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction processing to calculate the relative position angle (RPA). Finally, the known and unknown targets are finely identified based on RPA. Experimental results conducted on the MSTAR dataset demonstrate that the proposed method can achieve higher identification accuracy of unknown SAR targets than existing methods while maintaining high recognition accuracy of known targets.


2021 ◽  
Vol 2112 (1) ◽  
pp. 012020
Author(s):  
Xin Zhang ◽  
Qingmo Ja ◽  
SaiSai Ruan ◽  
Qin Hu

Abstract As the optical fiber perimeter security system is widely used in real life, how to identify the types of intrusion events in a timely and effective manner is becoming a major research hotspot. At present, in this field, various signal feature extraction algorithms are usually used to extract intrusion signal features to form feature vectors, and then machine learning algorithms are used to classify the feature vectors to achieve the role of identifying the types of intrusion events. As a common signal feature extraction algorithm, the EMD algorithm has been widely used in the feature extraction of various vibration signals, but it will have the problem of modal aliasing and affect the feature extraction effect of the signal. Therefore, EWT, VMD and other algorithms have been successively used proposed to improve modal aliasing. On the basis of fully comparing the existing algorithms, this paper proposes a fiber vibration signal identification method that decomposes the signal through the empirical wavelet transform (EWT) algorithm and then extracts the fuzzy entropy (FE) of each component, and uses LSTM for classification. The final experiment shows that the method can identify four kinds of fiber intrusion signals in time and effectively, with an average recognition accuracy rate of 97.87%, especially for flap and knock recognition rate of 100%.


2020 ◽  
Vol 10 (24) ◽  
pp. 8994
Author(s):  
Dong-Hwa Jang ◽  
Kyeong-Seok Kwon ◽  
Jung-Kon Kim ◽  
Ka-Young Yang ◽  
Jong-Bok Kim

Currently, invasive and external radio frequency identification (RFID) devices and pet tags are widely used for dog identification. However, social problems such as abandoning and losing dogs are constantly increasing. A more effective alternative to the existing identification method is required and the biometrics can be the alternative. This paper proposes an effective dog muzzle recognition method to identify individual dogs. The proposed method consists of preprocessing, feature extraction, matching, and postprocessing. For preprocessing, proposed resize and histogram equalization are used. For feature extraction algorithm, Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), Binary Robust Invariant Scaling Keypoints (BRISK) and Oriented FAST, and Rotated BRIEF (ORB) are applied and compared. For matching, Fast Library for Approximate Nearest Neighbors (FLANN) is used for SIFT and SURF, and hamming distance are used for BRISK and ORB. For postprocessing, two techniques to reduce incorrect matches are proposed. The proposed method was evaluated with 55 dog muzzle pattern images acquired from 11 dogs and 990 images augmented by the image deformation (i.e., angle, illumination, noise, affine transform). The best Equal Error Rate (EER) of the proposed method was 0.35%, and ORB was the most appropriate for the dog muzzle pattern recognition.


2013 ◽  
Vol 291-294 ◽  
pp. 2492-2495
Author(s):  
Xiao Ke Zhu ◽  
Xiao Pan Chen ◽  
Fan Zhang

In order to enhance the accuracy of gait recognition, a new gait feature extraction algorithm is proposed. Firstly, the gait images are preprocessed to extract moving objects, including background modeling, moving object extracting and morphological processing. Secondly, an equidistant slicing curve model based on system of polar coordinate is designed to slice the moving object, and the slicing vector is used to describe the spatial feature; Thirdly, the slicing vector is converted into frequency signal by Fourier transform to extract the frequency feature. Finally, the above two features are fused and used for the classification. The experimental results show that proposed algorithm provides higher correct classification rate than the algorithms using single feature, and meets the requirements of the real-time.


Sign in / Sign up

Export Citation Format

Share Document