scholarly journals Unknown SAR Target Identification Method Based on Feature Extraction Network and KLD–RPA Joint Discrimination

2021 ◽  
Vol 13 (15) ◽  
pp. 2901
Author(s):  
Zhiqiang Zeng ◽  
Jinping Sun ◽  
Congan Xu ◽  
Haiyang Wang

Recently, deep learning (DL) has been successfully applied in automatic target recognition (ATR) tasks of synthetic aperture radar (SAR) images. However, limited by the lack of SAR image target datasets and the high cost of labeling, these existing DL based approaches can only accurately recognize the target in the training dataset. Therefore, high precision identification of unknown SAR targets in practical applications is one of the important capabilities that the SAR–ATR system should equip. To this end, we propose a novel DL based identification method for unknown SAR targets with joint discrimination. First of all, the feature extraction network (FEN) trained on a limited dataset is used to extract the SAR target features, and then the unknown targets are roughly identified from the known targets by computing the Kullback–Leibler divergence (KLD) of the target feature vectors. For the targets that cannot be distinguished by KLD, their feature vectors perform t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction processing to calculate the relative position angle (RPA). Finally, the known and unknown targets are finely identified based on RPA. Experimental results conducted on the MSTAR dataset demonstrate that the proposed method can achieve higher identification accuracy of unknown SAR targets than existing methods while maintaining high recognition accuracy of known targets.

2021 ◽  
Vol 2112 (1) ◽  
pp. 012020
Author(s):  
Xin Zhang ◽  
Qingmo Ja ◽  
SaiSai Ruan ◽  
Qin Hu

Abstract As the optical fiber perimeter security system is widely used in real life, how to identify the types of intrusion events in a timely and effective manner is becoming a major research hotspot. At present, in this field, various signal feature extraction algorithms are usually used to extract intrusion signal features to form feature vectors, and then machine learning algorithms are used to classify the feature vectors to achieve the role of identifying the types of intrusion events. As a common signal feature extraction algorithm, the EMD algorithm has been widely used in the feature extraction of various vibration signals, but it will have the problem of modal aliasing and affect the feature extraction effect of the signal. Therefore, EWT, VMD and other algorithms have been successively used proposed to improve modal aliasing. On the basis of fully comparing the existing algorithms, this paper proposes a fiber vibration signal identification method that decomposes the signal through the empirical wavelet transform (EWT) algorithm and then extracts the fuzzy entropy (FE) of each component, and uses LSTM for classification. The final experiment shows that the method can identify four kinds of fiber intrusion signals in time and effectively, with an average recognition accuracy rate of 97.87%, especially for flap and knock recognition rate of 100%.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 471 ◽  
Author(s):  
Jiang Zeng ◽  
Guang-Zhong Cao ◽  
Ye-Ping Peng ◽  
Su-Dan Huang

In the field of welding robotics, visual sensors, which are mainly composed of a camera and a laser, have proven to be promising devices because of their high precision, good stability, and high safety factor. In real welding environments, there are various kinds of weld joints due to the diversity of the workpieces. The location algorithms for different weld joint types are different, and the welding parameters applied in welding are also different. It is very inefficient to manually change the image processing algorithm and welding parameters according to the weld joint type before each welding task. Therefore, it will greatly improve the efficiency and automation of the welding system if a visual sensor can automatically identify the weld joint before welding. However, there are few studies regarding these problems and the accuracy and applicability of existing methods are not strong. Therefore, a weld joint identification method for visual sensor based on image features and support vector machine (SVM) is proposed in this paper. The deformation of laser around a weld joint is taken as recognition information. Two kinds of features are extracted as feature vectors to enrich the identification information. Subsequently, based on the extracted feature vectors, the optimal SVM model for weld joint type identification is established. A comparative study of proposed and conventional strategies for weld joint identification is carried out via a contrast experiment and a robustness testing experiment. The experimental results show that the identification accuracy rate achieves 98.4%. The validity and robustness of the proposed method are verified.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1429
Author(s):  
Gang Hu ◽  
Kejun Wang ◽  
Liangliang Liu

Facing the complex marine environment, it is extremely challenging to conduct underwater acoustic target feature extraction and recognition using ship-radiated noise. In this paper, firstly, taking the one-dimensional time-domain raw signal of the ship as the input of the model, a new deep neural network model for underwater target recognition is proposed. Depthwise separable convolution and time-dilated convolution are used for passive underwater acoustic target recognition for the first time. The proposed model realizes automatic feature extraction from the raw data of ship radiated noise and temporal attention in the process of underwater target recognition. Secondly, the measured data are used to evaluate the model, and cluster analysis and visualization analysis are performed based on the features extracted from the model. The results show that the features extracted from the model have good characteristics of intra-class aggregation and inter-class separation. Furthermore, the cross-folding model is used to verify that there is no overfitting in the model, which improves the generalization ability of the model. Finally, the model is compared with traditional underwater acoustic target recognition, and its accuracy is significantly improved by 6.8%.


Author(s):  
Shivali Parkhedkar ◽  
Shaveri Vairagade ◽  
Vishakha Sakharkar ◽  
Bharti Khurpe ◽  
Arpita Pikalmunde ◽  
...  

In our proposed work we will accept the challenges of recognizing the words and we will work to win the challenge. The handwritten document is scanned using a scanner. The image of the scanned document is processed victimization the program. Each character in the word is isolated. Then the individual isolated character is subjected to “Feature Extraction” by the Gabor Feature. Extracted features are passed through KNN classifier. Finally we get the Recognized word. Character recognition is a process by which computer recognizes handwritten characters and turns them into a format which a user can understand. Computer primarily based pattern recognition may be a method that involves many sub process. In today’s surroundings character recognition has gained ton of concentration with in the field of pattern recognition. Handwritten character recognition is beneficial in cheque process in banks, form processing systems and many more. Character recognition is one in all the favored and difficult space in analysis. In future, character recognition creates paperless environment. The novelty of this approach is to achieve better accuracy, reduced computational time for recognition of handwritten characters. The proposed method extracts the geometric features of the character contour. These features are based on the basic line types that forms the character skeleton. The system offers a feature vector as its output. The feature vectors so generated from a training set, were then used to train a pattern recognition engine based on Neural Networks so that the system can be benchmarked. The algorithm proposed concentrates on the same. It extracts totally different line varieties that forms a specific character. It conjointly also concentrates on the point options of constant. The feature extraction technique explained was tested using a Neural Network which was trained with the feature vectors obtained from the proposed method.


2020 ◽  
Author(s):  
Yaxue Ren ◽  
Fucai Liu ◽  
Jingfeng Lv ◽  
Aiwen Meng ◽  
Yintang Wen

Abstract The division of fuzzy space is very important in the identification of premise parameters and the Gaussian membership function is applied to the premise fuzzy set. However, the two parameters of Gaussian membership function, center and width, are not easy to be determined. In this paper, a novel T-S fuzzy model optimal identification method of optimizing two parameters of Gaussian function based on Fuzzy c-means (FCM) and particle swarm optimization (PSO) algorithm is presented. Firstly, we use FCM algorithm to determine the Gaussian center for rough adjustment. Then, under the condition that the center of Gaussian function is fixed, the PSO algorithm is used to optimize another adjustable parameter, the width of the Gaussian membership function, to achieve fine tuning, so as to complete the identification of prerequisite parameters of fuzzy model. In addition, the recursive least squares (RLS) algorithm is used to identify the conclusion parameters. Finally, the effectiveness of this method for T-S fuzzy model identification is verified by simulation examples, and the higher identification accuracy can be obtained by using the novel identification method described compared with other identification methods.


2020 ◽  
Author(s):  
◽  
Shiying Li

Although Zernike and pseudo-Zernike moments have some advanced properties, the computation process is generally very time-consuming, which has limited their practical applications. To improve the computational efficiency of Zernike and pseudo-Zernike moments, in this research, we have explored the use of GPU to accelerate moments computation, and proposed a GPUaccelerated algorithm. The newly developed algorithm is implemented in Python and CUDA C++ with optimizations based on symmetric properties and k × k sub-region scheme. The experimental results are encouraging and have shown that our GPU-accelerated algorithm is able to compute Zernike moments up to order 700 for an image sized at 512 × 512 in 1.7 seconds and compute pseudo-Zernike moments in 3.1 seconds. We have also verified the accuracy of our GPU algorithm by performing image reconstructions from the higher orders of Zernike and pseudo-Zernike moments. For an image sized at 512 × 512, with the maximum order of 700 and k = 11, the PSNR (Peak Signal to Noise Ratio) values of its reconstructed versions from Zernike and pseudo-Zernike moments are 44.52 and 46.29 separately. We have performed image reconstructions from partial sets of Zernike and pseudo-Zernike moments with various order n and different repetition m. Experimental results of both Zernike and pseudo-Zernike moments show that the images reconstructed from the moments of lower and higher orders preserve the principle contents and details of the original image respectively, while moments of positive and negative m result in identical images. Lastly, we have proposed a set of feature vectors based on pseudo-Zernike moments for Chinese character recognition. Three different feature vectors are composed of different parts of four selected lower pseudo-Zernike moments. Experiments on a set of 6,762 Chinese characters show that this method performs well to recognize similar-shaped Chinese characters.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1507
Author(s):  
Feiyu Zhang ◽  
Luyang Zhang ◽  
Hongxiang Chen ◽  
Jiangjian Xie

Deep convolutional neural networks (DCNNs) have achieved breakthrough performance on bird species identification using a spectrogram of bird vocalization. Aiming at the imbalance of the bird vocalization dataset, a single feature identification model (SFIM) with residual blocks and modified, weighted, cross-entropy function was proposed. To further improve the identification accuracy, two multi-channel fusion methods were built with three SFIMs. One of these fused the outputs of the feature extraction parts of three SFIMs (feature fusion mode), the other fused the outputs of the classifiers of three SFIMs (result fusion mode). The SFIMs were trained with three different kinds of spectrograms, which were calculated through short-time Fourier transform, mel-frequency cepstrum transform and chirplet transform, respectively. To overcome the shortage of the huge number of trainable model parameters, transfer learning was used in the multi-channel models. Using our own vocalization dataset as a sample set, it is found that the result fusion mode model outperforms the other proposed models, the best mean average precision (MAP) reaches 0.914. Choosing three durations of spectrograms, 100 ms, 300 ms and 500 ms for comparison, the results reveal that the 300 ms duration is the best for our own dataset. The duration is suggested to be determined based on the duration distribution of bird syllables. As for the performance with the training dataset of BirdCLEF2019, the highest classification mean average precision (cmAP) reached 0.135, which means the proposed model has certain generalization ability.


Author(s):  
Musab T. S. Al-Kaltakchi ◽  
Haithem Abd Al-Raheem Taha ◽  
Mohanad Abd Shehab ◽  
Mohamed A.M. Abdullah

<p><span lang="EN-GB">In this paper, different feature extraction and feature normalization methods are investigated for speaker recognition. With a view to give a good representation of acoustic speech signals, Power Normalized Cepstral Coefficients (PNCCs) and Mel Frequency Cepstral Coefficients (MFCCs) are employed for feature extraction. Then, to mitigate the effect of linear channel, Cepstral Mean-Variance Normalization (CMVN) and feature warping are utilized. The current paper investigates Text-independent speaker identification system by using 16 coefficients from both the MFCCs and PNCCs features. Eight different speakers are selected from the GRID-Audiovisual database with two females and six males. The speakers are modeled using the coupling between the Universal Background Model and Gaussian Mixture Models (GMM-UBM) in order to get a fast scoring technique and better performance. The system shows 100% in terms of speaker identification accuracy. The results illustrated that PNCCs features have better performance compared to the MFCCs features to identify females compared to male speakers. Furthermore, feature wrapping reported better performance compared to the CMVN method. </span></p>


Sign in / Sign up

Export Citation Format

Share Document