scholarly journals A Fiber Vibration Signal Identification Method Based on the Combination of EWT-FE and LSTM

2021 ◽  
Vol 2112 (1) ◽  
pp. 012020
Author(s):  
Xin Zhang ◽  
Qingmo Ja ◽  
SaiSai Ruan ◽  
Qin Hu

Abstract As the optical fiber perimeter security system is widely used in real life, how to identify the types of intrusion events in a timely and effective manner is becoming a major research hotspot. At present, in this field, various signal feature extraction algorithms are usually used to extract intrusion signal features to form feature vectors, and then machine learning algorithms are used to classify the feature vectors to achieve the role of identifying the types of intrusion events. As a common signal feature extraction algorithm, the EMD algorithm has been widely used in the feature extraction of various vibration signals, but it will have the problem of modal aliasing and affect the feature extraction effect of the signal. Therefore, EWT, VMD and other algorithms have been successively used proposed to improve modal aliasing. On the basis of fully comparing the existing algorithms, this paper proposes a fiber vibration signal identification method that decomposes the signal through the empirical wavelet transform (EWT) algorithm and then extracts the fuzzy entropy (FE) of each component, and uses LSTM for classification. The final experiment shows that the method can identify four kinds of fiber intrusion signals in time and effectively, with an average recognition accuracy rate of 97.87%, especially for flap and knock recognition rate of 100%.

2021 ◽  
Vol 13 (15) ◽  
pp. 2901
Author(s):  
Zhiqiang Zeng ◽  
Jinping Sun ◽  
Congan Xu ◽  
Haiyang Wang

Recently, deep learning (DL) has been successfully applied in automatic target recognition (ATR) tasks of synthetic aperture radar (SAR) images. However, limited by the lack of SAR image target datasets and the high cost of labeling, these existing DL based approaches can only accurately recognize the target in the training dataset. Therefore, high precision identification of unknown SAR targets in practical applications is one of the important capabilities that the SAR–ATR system should equip. To this end, we propose a novel DL based identification method for unknown SAR targets with joint discrimination. First of all, the feature extraction network (FEN) trained on a limited dataset is used to extract the SAR target features, and then the unknown targets are roughly identified from the known targets by computing the Kullback–Leibler divergence (KLD) of the target feature vectors. For the targets that cannot be distinguished by KLD, their feature vectors perform t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction processing to calculate the relative position angle (RPA). Finally, the known and unknown targets are finely identified based on RPA. Experimental results conducted on the MSTAR dataset demonstrate that the proposed method can achieve higher identification accuracy of unknown SAR targets than existing methods while maintaining high recognition accuracy of known targets.


2014 ◽  
Vol 530-531 ◽  
pp. 345-348
Author(s):  
Min Qiang Xu ◽  
Hai Yang Zhao ◽  
Jin Dong Wang

This paper presents a feature extraction method based on LMD and MSE for reciprocating compressor according to the strong nonstationarity, nonlinearity and features coupling characteristics of vibration signal. The vibration signal was decomposed into a set of PFs, and then multiscale entropy of the first several PFs were calculated as feature vectors with different scale factors. Based on the maximum of average Euclidean distances, the feature vectors which have the best divisibility were selected. The feature vectors of reciprocating compressor at different bearing clearance states were extracted using this method, and superiority of this method is verified by comparing with the results of sample entropy.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1215 ◽  
Author(s):  
Zhaoxi Li ◽  
Yaan Li ◽  
Kai Zhang ◽  
Jianli Guo

Ship-radiated noise signal has a lot of nonlinear, non-Gaussian, and nonstationary information characteristics, which can reflect the important signs of ship performance. This paper proposes a novel feature extraction technique for ship-radiated noise based on improved intrinsic time-scale decomposition (IITD) and multiscale dispersion entropy (MDE). The proposed feature extraction technique is named IITD-MDE. First, IITD is applied to decompose the ship-radiated noise signal into a series of intrinsic scale components (ISCs). Then, we select the ISC with the main information through the correlation analysis, and calculate the MDE value as feature vectors. Finally, the feature vectors are input into the support vector machine (SVM) for ship classification. The experimental results indicate that the recognition rate of the proposed technique reaches 86% accuracy. Therefore, compared with the other feature extraction methods, the proposed method provides a new solution for classifying different types of ships effectively.


CONVERTER ◽  
2021 ◽  
pp. 681-695
Author(s):  
Zheng Yan

Escalator is an essential large-scale public transportation equipment. Once the failure occurs, it will inevitably affect the operation and even cause safety accidents.  As an important part of the structure of escalator, the loosening of the anchor bolt will lead to abnormal operation of escalator.  Aiming at the current difficultyin extracting the fault features of anchor bolt loosening, a fault feature extraction method of escalator anchor loosening is constructed based on empirical wavelet transform (EWT) and bispectrum analysis. First, perform EWT decomposition of the original footing vibration acceleration signal to obtain a series of empirical mode functions(EMFs).Then, for each empirical mode function, the bispectrum was calculated by using bispectrum analysis method, and six texture features of the bispectrum were extracted as fault feature vectors by means of gray-gradient co-occurrence matrix.  Finally, the extracted multi-scale fault feature vectors and bi-directional longshort-term memory (BI-LSTM) were used to classify and identify the four types of fault signals with different degrees of foot loosening, and the fault types of foot loosening were determined. The results show that the feature extraction method based on empirical wavelet decomposition and bispectrum analysis can more effectively identify the loosening level of anchor bolts.


Author(s):  
Manish M. Kayasth ◽  
Bharat C. Patel

The entire character recognition system is logically characterized into different sections like Scanning, Pre-processing, Classification, Processing, and Post-processing. In the targeted system, the scanned image is first passed through pre-processing modules then feature extraction, classification in order to achieve a high recognition rate. This paper describes mainly on Feature extraction and Classification technique. These are the methodologies which play an important role to identify offline handwritten characters specifically in Gujarati language. Feature extraction provides methods with the help of which characters can identify uniquely and with high degree of accuracy. Feature extraction helps to find the shape contained in the pattern. Several techniques are available for feature extraction and classification, however the selection of an appropriate technique based on its input decides the degree of accuracy of recognition. 


2019 ◽  
Vol 13 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Abhisek Sethy ◽  
Prashanta Kumar Patra ◽  
Deepak Ranjan Nayak

Background: In the past decades, handwritten character recognition has received considerable attention from researchers across the globe because of its wide range of applications in daily life. From the literature, it has been observed that there is limited study on various handwritten Indian scripts and Odia is one of them. We revised some of the patents relating to handwritten character recognition. Methods: This paper deals with the development of an automatic recognition system for offline handwritten Odia character recognition. In this case, prior to feature extraction from images, preprocessing has been done on the character images. For feature extraction, first the gray level co-occurrence matrix (GLCM) is computed from all the sub-bands of two-dimensional discrete wavelet transform (2D DWT) and thereafter, feature descriptors such as energy, entropy, correlation, homogeneity, and contrast are calculated from GLCMs which are termed as the primary feature vector. In order to further reduce the feature space and generate more relevant features, principal component analysis (PCA) has been employed. Because of the several salient features of random forest (RF) and K- nearest neighbor (K-NN), they have become a significant choice in pattern classification tasks and therefore, both RF and K-NN are separately applied in this study for segregation of character images. Results: All the experiments were performed on a system having specification as windows 8, 64-bit operating system, and Intel (R) i7 – 4770 CPU @ 3.40 GHz. Simulations were conducted through Matlab2014a on a standard database named as NIT Rourkela Odia Database. Conclusion: The proposed system has been validated on a standard database. The simulation results based on 10-fold cross-validation scenario demonstrate that the proposed system earns better accuracy than the existing methods while requiring least number of features. The recognition rate using RF and K-NN classifier is found to be 94.6% and 96.4% respectively.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Daniel Bonet-Solà ◽  
Rosa Ma Alsina-Pagès

Acoustic event detection and analysis has been widely developed in the last few years for its valuable application in monitoring elderly or dependant people, for surveillance issues, for multimedia retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound source identification is a key issue to give a smart technological answer to all the aforementioned applications. Diverse types of sounds and variate environments, together with a number of challenges in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper presents a comparative study on combining several feature extraction algorithms (Mel Frequency Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB)) with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN), and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work has the goal of detailing a best practice method and evaluate the reliability of this general-purpose algorithm for all the classes. Preliminary results show that most of the combinations of feature extraction and machine learning present acceptable results in most of the described corpora. Nevertheless, there is a combination that outperforms the others: the use of GTCC together with kNN, and its results are further analyzed for all the corpora.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 405
Author(s):  
Marcos Lupión ◽  
Javier Medina-Quero ◽  
Juan F. Sanjuan ◽  
Pilar M. Ortigosa

Activity Recognition (AR) is an active research topic focused on detecting human actions and behaviours in smart environments. In this work, we present the on-line activity recognition platform DOLARS (Distributed On-line Activity Recognition System) where data from heterogeneous sensors are evaluated in real time, including binary, wearable and location sensors. Different descriptors and metrics from the heterogeneous sensor data are integrated in a common feature vector whose extraction is developed by a sliding window approach under real-time conditions. DOLARS provides a distributed architecture where: (i) stages for processing data in AR are deployed in distributed nodes, (ii) temporal cache modules compute metrics which aggregate sensor data for computing feature vectors in an efficient way; (iii) publish-subscribe models are integrated both to spread data from sensors and orchestrate the nodes (communication and replication) for computing AR and (iv) machine learning algorithms are used to classify and recognize the activities. A successful case study of daily activities recognition developed in the Smart Lab of The University of Almería (UAL) is presented in this paper. Results present an encouraging performance in recognition of sequences of activities and show the need for distributed architectures to achieve real time recognition.


2019 ◽  
Vol 9 (8) ◽  
pp. 1696 ◽  
Author(s):  
Wang ◽  
Lee

Fault characteristic extraction is attracting a great deal of attention from researchers for the fault diagnosis of rotating machinery. Generally, when a gearbox is damaged, accurate identification of the side-band features can be used to detect the condition of the machinery equipment to reduce financial losses. However, the side-band feature of damaged gears that are constantly disturbed by strong jamming is embedded in the background noise. In this paper, a hybrid signal-processing method is proposed based on a spectral subtraction (SS) denoising algorithm combined with an empirical wavelet transform (EWT) to extract the side-band feature of gear faults. Firstly, SS is used to estimate the real-time noise information, which is used to enhance the fault signal of the helical gearbox from a vibration signal with strong noise disturbance. The empirical wavelet transform can extract amplitude-modulated/frequency-modulated (AM-FM) components of a signal using different filter bands that are designed in accordance with the signal properties. The fault signal is obtained by building a flexible gear for a helical gearbox with ADAMS software. The experiment shows the feasibility and availability of the multi-body dynamics model. The spectral subtraction-based adaptive empirical wavelet transform (SS-AEWT) method was applied to estimate the gear side-band feature for different tooth breakages and the strong background noise. The verification results show that the proposed method gives a clearer indication of gear fault characteristics with different tooth breakages and the different signal-noise ratio (SNR) than the conventional EMD and LMD methods. Finally, the fault characteristic frequency of a damaged gear suggests that the proposed SS-AEWT method can accurately and reliably diagnose faults of a gearbox.


Sign in / Sign up

Export Citation Format

Share Document