scholarly journals Production of Glucose from Waste Bark Acacia Mangium Using Delifnification and Chemical Hydrolysis Process

2019 ◽  
Vol 1167 ◽  
pp. 012052
Author(s):  
S Arita ◽  
F Hadiah ◽  
R Amalia ◽  
E Rosmalisa ◽  
W Andalia
2018 ◽  
Vol 18 (3) ◽  
pp. 270-276 ◽  
Author(s):  
Muhammad Irfan Said ◽  
Effendi Abustam ◽  
Wempie Pakiding ◽  
Muhammad Zain Mide ◽  
Midiawati Sukma

2016 ◽  
Vol 19 (1) ◽  
pp. 26 ◽  
Author(s):  
Alfiana Nurjannah ◽  
Darmanto Darmanto ◽  
Ima Wijayanti

<p>Processing of glucosamine from crab shell chitin can be done by chemical hydrolysis with hydrochloric<br />acid (HCl). The purpose of this research was to determine the effect of chitin immersion by various<br />concentrations of HCL toward glucosamine generated and the selected concentration of HCL to glucosamine<br />chemical hydrolysis process. The material used in this study is crab shells from Betahwalang village, Demak,<br />and the solvent is HCl and NaOH. Parameters are glucosamine yield, melting point, loss on drying (LoD),<br />PH and spectrum analysis with FTIR method. Research using experimental design completely randomized<br />design three times treatment with repetition. The results were analyzed using analysis of variance (ANOVA)<br />to determine the differences between treatments concentration of 27%, 32% and 37%. The selected were<br />tested with honestly significant difference test. The results showed differences in the concentration of HCl<br />used cause differences in the characteristics of the resulting glucosamine. The higher HCl concentrations<br />used, the lower the rendemen results and melting point. The selected HCL treatment concentration was at<br />27% observed from glucosamine yield (18.39%) and the melting point (192-195oC). The treatment of 37%<br />produces LoD (0.647%), pH (4.01) and spectrum glucosamine is an O-H group (3297.75/cm), the group of<br />N-H (1617.53/cm), the group of C-N (1394.94/cm).<br />Keywords: crab shells, chitin, melting point, glucosamine</p>


2021 ◽  
Vol 11 (2) ◽  
pp. 357-363
Author(s):  
Soeprijanto Soeprijanto ◽  
Lailatul Qomariyah ◽  
Afan Hamzah ◽  
Saidah Altway

Cassava solid waste (Onggok) is a by-product of the starch industry containing a lot of fiber, especially cellulose and hemicellulose. It has the potential to be converted to bioethanol. This work aimed to evaluate the effect of feedstocks ratio for the optimal bioethanol production via enzymatic and acidic hydrolysis process in a batch fermentation process. The effect of alpha-amylase and glucoamylase activities was studied. The sulfuric acid concentrations in the hydrolysis process in converting cassava into reducing sugar were also investigated. The reducing sugar was then fermented to produce ethanol. Enzymatic and chemical hydrolysis was carried out with the ratio of onggok(g)/water(L), 50/1, 75/1, and 100/1 (w/v). In the enzymatic hydrolysis, 22.5, 45, and 67.5 KNU (Kilo Novo alpha-amylase Unit) for liquefaction; and 65, 130, and 195 GAU (Glucoamylase Unit) for saccharification, respectively of enzymes were applied. The liquefaction was carried out at 90-100⁰C for 2 hours. The saccharification was executed at 65 ⁰C for 4 hours. Meanwhile, the acidic hydrolysis operating condition was at 90-100 ⁰C for 3 hours. The fermentation was performed at pH 4.5 for 3 days. Fourier Transform Infra-Red (FTIR) analysis was conducted to evaluate the hydrolysis process. The highest ethanol was yielded in the fermentation at 8.89% with the ratio of onggok to water 100:1, 67.5 KNU of alpha-amylase, and 195 GAU of glucoamylase. Ethanol was further purified utilizing fractional distillation. The final ethanol concentration was at 93-94%.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2011 ◽  
Vol 3 (2) ◽  
pp. 1 ◽  
Author(s):  
Effendi Arsad

The utilization of acacia and kelampayan wood as  plywood materials  were done. There are two kinds of treatments with two cores samples.  Wood core with thickness 2 mm and 3 mm with the spreading rate of adhesive  150 gr/m2, 200 gr/m2 and 250 gr/m2.   Resuls showed  that the  water content  of plywood  are 9,01% - 14,29%  for acacia and 9,17% - 10,58%   for kelampayan wood material.  The density of the plywood are 0,62 gr/cm3 – 0,73 gr/cm3  for acacia and 0,44 gr/cm3 – 0,57 gr/cm3.  for kelampayan wood material.  The tensile  strength of plywood are tensile strength of  plywood  are 9,49 kg/cm2 – 14,73 kg/cm2  for acacia and 8,61 kg/cm2 – 12,58 kg/cm2   for kelampayan wood material.Keywords: acacia, kelampayan,  the spreading rate of adhesive,  physics       characteristic,  plywood


2020 ◽  
Vol 82 (4) ◽  
pp. 342-351
Author(s):  
Wilbert Valkinir Cabreira ◽  
Marcos Gervasio Pereira ◽  
Fabiano de Carvalho Balieiro ◽  
Eduardo da Silva Matos ◽  
Renato de Aragão Ribeiro Rodrigues ◽  
...  

2016 ◽  
Vol 2016 (3) ◽  
pp. 878-886
Author(s):  
Ester Rus ◽  
Aurelien Perrault ◽  
Nick Mills ◽  
Achame Shana ◽  
Obinna Molokwu ◽  
...  

Jurnal Kimia ◽  
2016 ◽  
Author(s):  
Devi Esteria Hasianna Purba ◽  
Iryanti Eka Suprihatin ◽  
A.A.I.A. Mayun Laksmiwati

Ethanol fermented from potato peels is proposed as one alternative source of renewable energy called bioethanol. In this research bioethanol was produced through four stages namely acid hydrolysis, detoxification, fermentation and distillation. The acid hydrolysis process was carried out using sulphuric acid at 100oC for 60 minutes. The detoxification process was carried out by adding NH4OH into the hydrolyzate prior to fermentation. Distillation was performed up to 100oC and the distillate with the BP of 78-84oC was determined for its ethanol content using gas chromatography. The ethanol produced from 5 grams of dried potato peels through fermentation for 4, 5, 6, and 7 days 3.54%; 4,85%; 5,35%; and 6.15% respectively.


2021 ◽  
Vol 1858 (1) ◽  
pp. 012088
Author(s):  
Didi Dwi Anggoro ◽  
Luqman Buchori ◽  
Mohamad Djaeni ◽  
Ratnawati ◽  
Diah Susetyo Retnowati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document