scholarly journals Fabrication of fluidic based capacitive pressure sensor using printed circuit board and soft lithography process

2019 ◽  
Vol 1185 ◽  
pp. 012010
Author(s):  
Muhammad Rashidi Ab Razak ◽  
Mohd Norzaidi Mat Nawi
Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1525
Author(s):  
Natiely Hernández Sebastián ◽  
Noé Villa Villaseñor ◽  
Francisco-Javier Renero-Carrillo ◽  
Daniela Díaz Alonso ◽  
Wilfrido Calleja Arriaga

In this paper, an alternative strategy for the design of a bidirectional inductive power transfer (IPT) module, intended for the continuous monitoring of cardiac pressure, is presented. This new integrated implantable medical device (IMD) was designed including a precise ventricular pressure sensor, where the available implanting room is restricted to a 1.8 × 1.8 cm2 area. This work considers a robust magnetic coupling between an external reading coil and the implantable module: a three-dimensional inductor and a touch mode capacitive pressure sensor (TMCPS) set. In this approach, the coupling modules were modelled as RCL circuits tuned at a 13.56 MHz frequency. The analytical design was validated by means of Comsol Multiphysics, CoventorWare, and ANSYS HFSS software tools. A power transmission efficiency (PTE) of 94% was achieved through a 3.5 cm-thick biological tissue, based on high magnitudes for the inductance (L) and quality factor (Q) components. A specific absorption rate (SAR) of less than 1.6 W/Kg was attained, which suggests that this IPT system can be implemented in a safe way, according to IEEE C95.1 safety guidelines. The set of inductor and capacitor integrated arrays were designed over a very thin polyimide film, where the 3D coil was 18 mm in diameter and approximately 50% reduced in size, considering any conventional counterpart. Finally, this new approach for the IMD was under development using low-cost thin film manufacturing technologies for flexible electronics. Meanwhile, as an alternative test, this novel system was fabricated using a discrete printed circuit board (PCB) approach, where preliminary electromagnetic characterization demonstrates the viability of this bidirectional IPT design.


2017 ◽  
Vol 2017 (HiTEN) ◽  
pp. 000063-000067
Author(s):  
Piers R. Tremlett

Abstract The Tamessa project has developed a high-temperature, multilayer, Printed Circuit Board and component assembly process that is capable of withstanding 225°C operating temperatures in a non-hermetic environment. This paper describes the practical application of this project's work to the electronic interface for a high temperature pressure sensor. The PCB used in Tamessa has been made from novel materials and the Surface Mount Technology (SMT) component attach process is a solder-less process that uses an adhesive. Additionally, the project has developed and proved a Chip on Board (COB) system. The combination has enabled the development of a complete assembly system that has been shown to withstand temperature excursions up to 250°C in a non-hermetic environment. The successful application to a pressure sensor, designed to resist temperatures of 210°C, was a further test to demonstrate its practical capability in a real-life situation.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740017
Author(s):  
Liangwei Dong ◽  
Yueli Hu

In order to improve the robustness of microfluidic networks in printed circuit board (PCB)-based microfluidic platforms, a new method was presented. A pattern in a PCB was formed using hollowed-out technology. Polydimethylsiloxane was partly filled in the hollowed-out fields after mounting an adhesive tape on the bottom of the PCB, and solidified in an oven. Then, microfluidic networks were built using soft lithography technology. Microfluidic transportation and dilution operations were demonstrated using the fabricated microfluidic platform. Results show that this method can embed microfluidic networks into a PCB, and microfluidic operations can be implemented in the microfluidic networks embedded into the PCB.


2012 ◽  
Vol 132 (6) ◽  
pp. 404-410 ◽  
Author(s):  
Kenichi Nakayama ◽  
Kenichi Kagoshima ◽  
Shigeki Takeda

2014 ◽  
Vol 5 (1) ◽  
pp. 737-741
Author(s):  
Alejandro Dueñas Jiménez ◽  
Francisco Jiménez Hernández

Because of the high volume of processing, transmission, and information storage, electronic systems presently requires faster clock speeds tosynchronizethe integrated circuits. Presently the “speeds” on the connections of a printed circuit board (PCB) are in the order of the GHz. At these frequencies the behavior of the interconnects are more like that of a transmission line, and hence distortion, delay, and phase shift- effects caused by phenomena like cross talk, ringing and over shot are present and may be undesirable for the performance of a circuit or system.Some of these phrases were extracted from the chapter eight of book “2-D Electromagnetic Simulation of Passive Microstrip Circuits” from the corresponding author of this paper.


Author(s):  
Prabjit Singh ◽  
Ying Yu ◽  
Robert E. Davis

Abstract A land-grid array connector, electrically connecting an array of plated contact pads on a ceramic substrate chip carrier to plated contact pads on a printed circuit board (PCB), failed in a year after assembly due to time-delayed fracture of multiple C-shaped spring connectors. The land-grid-array connectors analyzed had arrays of connectors consisting of gold on nickel plated Be-Cu C-shaped springs in compression that made electrical connections between the pads on the ceramic substrates and the PCBs. Metallography, fractography and surface analyses revealed the root cause of the C-spring connector fracture to be plating solutions trapped in deep grain boundary grooves etched into the C-spring connectors during the pre-plating cleaning operation. The stress necessary for the stress corrosion cracking mechanism was provided by the C-spring connectors, in the land-grid array, being compressed between the ceramic substrate and the printed circuit board.


Sign in / Sign up

Export Citation Format

Share Document