scholarly journals Estimating snow cover area in south of Turkey using the Normalized Difference Snow Index (NDSI) form MODIS Satellite Images

2019 ◽  
Vol 1279 ◽  
pp. 012047
Author(s):  
Adnan H. Abdulkadhim
Author(s):  
P. Verma ◽  
S. K. Ghosh ◽  
R. Ramsankaran

Abstract. Snow Depletion Curve derived from satellite images is a key parameter in Snowmelt Runoff Model. The fixed temporal resolution of a satellite and presence of cloud cover in Himalayas restricts accuracy of generated SDC. This study presents an effective approach of reducing temporal interval between two consecutive dates by integrating normalized Snow Cover Area estimated from multiple sources of satellite data. SCA is extracted by using Normalized Difference Snow Index for six snowmelt seasons from 2013 to 2018 for Gangotri basin situated in Indian Himalayas. This work also explores potential of recently launched Sentinel-3A for estimating SCA. Normalized SCA is utilized to eliminate the effect of difference in spatial resolution of various satellites. The result develops an important linear relation between SDC and time with a decrease in snow cover of 0.005/day that may be further refined by increasing the number of snowmelt seasons. This relationship may help scientific community in understanding hydrological response of glaciers to climate change.


Climate ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 57 ◽  
Author(s):  
Shubhechchha Thapa ◽  
Parveen K. Chhetri ◽  
Andrew G. Klein

The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP (National Polar-Orbiting Partnership) satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS (Moderate Resolution Imaging Spectroradiometer). Although it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage, quantitative comparisons between their snow products are currently limited. Therefore, this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (Environmental Data Records) (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI (Normalized Difference Snow Index) Snow Cover product at a snow cover fraction of 30% generated binary snow maps are most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. The agreement was highest during the winter but lower during late fall and spring. MODIS and VIIRS often mapped snow/no-snow transition zones as a cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicate that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67% and cloud 65.02% and 59.91%, respectively. While VIIRS and MODIS have a similar capacity to map snow cover, VIIRS has the potential to map snow cover area more accurately, for the successful development of climate data records.


2016 ◽  
Vol 9 (1) ◽  
pp. 307-321 ◽  
Author(s):  
S. Härer ◽  
M. Bernhardt ◽  
K. Schulz

Abstract. Terrestrial photography combined with the recently presented Photo Rectification And ClassificaTIon SoftwarE (PRACTISE V.1.0) has proven to be a valuable source to derive snow cover maps in a high temporal and spatial resolution. The areal coverage of the used digital photographs is however strongly limited. Satellite images on the other hand can cover larger areas but do show uncertainties with respect to the accurate detection of the snow covered area. This is especially the fact if user defined thresholds are needed, e.g. in case of the frequently used normalized-difference snow index (NDSI). The definition of this value is often not adequately defined by either a general value from literature or over the impression of the user, but not by reproducible independent information. PRACTISE V.2.1 addresses this important aspect and shows additional improvements. The Matlab-based software is now able to automatically process and detect snow cover in satellite images. A simultaneously captured camera-derived snow cover map is in this case utilized as in situ information for calibrating the NDSI threshold value. Moreover, an additional automatic snow cover classification, specifically developed to classify shadow-affected photographs, was included. The improved software was tested for photographs and Landsat 7 Enhanced Thematic Mapper (ETM+) as well as Landsat 8 Operational Land Imager (OLI) scenes in the Zugspitze massif (Germany). The results show that using terrestrial photography in combination with satellite imagery can lead to an objective, reproducible, and user-independent derivation of the NDSI threshold and the resulting snow cover map. The presented method is not limited to the sensor system or the threshold used in here but offers manifold application options for other scientific branches.


2015 ◽  
Vol 7 (2) ◽  
pp. 415-429
Author(s):  
M. Seyedielmabad ◽  
H. R. Moradi

In this study, we explored the potential of the multispectral and multi-temporal IRS Advanced Wide Field Sensor (AWiFS) data for mapping of the snow cover in the northwest regions of Iran. The AWiFS snow cover maps, based on the unsupervised classification method, were compared with the estimates of snow cover area derived from the moderate resolution imaging spectroradiometer (MODIS) images based on the normalized difference snow index. Good concurrence was observed with respect to the snow area between the AWiFS features and the MODIS features; however, the snow spatial distribution of the AWiFS features differed from those of the MODIS based on the nonentity of the temporal accordance between two types of features. Also, we explored the relationships between some climatic and topographic factors with the snowpack in the northwest part of Iran. Relationships between some climatic factors with snowpack specifications were obtained, which showed significant correlation only between the components of daily temperature and snow density. The other results showed that the amounts of snowpack depth have significant correlations with the height of the stations and the height classes in 1% surface and snowpack depths showed significant differences together within the different height classes.


2020 ◽  
Vol 12 (17) ◽  
pp. 2782
Author(s):  
Sikandar Ali ◽  
Muhammad Jehanzeb Masud Cheema ◽  
Muhammad Mohsin Waqas ◽  
Muhammad Waseem ◽  
Usman Khalid Awan ◽  
...  

The frozen water reserves on the Earth are not only very dynamic in their nature, but also have significant effects on hydrological response of complex and dynamic river basins. The Indus basin is one of the most complex river basins in the world and receives most of its share from the Asian Water Tower (Himalayas). In such a huge river basin with high-altitude mountains, the regular quantification of snow cover is a great challenge to researchers for the management of downstream ecosystems. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) daily (MOD09GA) and 8-day (MOD09A1) products were used for the spatiotemporal quantification of snow cover over the Indus basin and the western rivers’ catchments from 2008 to 2018. The high-resolution Landsat Enhanced Thematic Mapper Plus (ETM+) was used as a standard product with a minimum Normalized Difference Snow Index (NDSI) threshold (0.4) to delineate the snow cover for 120 scenes over the Indus basin on different days. All types of errors of commission/omission were masked out using water, sand, cloud, and forest masks at different spatiotemporal resolutions. The snow cover comparison of MODIS products with Landsat ETM+, in situ snow data and Google Earth imagery indicated that the minimum NDSI threshold of 0.34 fits well compared to the globally accepted threshold of 0.4 due to the coarser resolution of MODIS products. The intercomparison of the time series snow cover area of MODIS products indicated R2 values of 0.96, 0.95, 0.97, 0.96 and 0.98, for the Chenab, Jhelum, Indus and eastern rivers’ catchments and Indus basin, respectively. A linear least squares regression analysis of the snow cover area of the Indus basin indicated a declining trend of about 3358 and 2459 km2 per year for MOD09A1 and MOD09GA products, respectively. The results also revealed a decrease in snow cover area over all the parts of the Indus basin and its sub-catchments. Our results suggest that MODIS time series NDSI analysis is a useful technique to estimate snow cover over the mountainous areas of complex river basins.


2021 ◽  
Vol 9 (03) ◽  
pp. 30-34
Author(s):  
D.S. Parihar ◽  
◽  
J.S. Rawat ◽  

Present research paper is an attempt to examine the dynamics of snow cover by using Normalized Difference Snow Index (NDSI) in Gori Ganga watershed, Kumaun Himalaya, Uttarakhand (India). For the study of snow cover of Landsat satellite imageries of three different time periods like Landsat TM of 1990, Landsat TM of 1999 and Landsat TM 2016 were used. Geographical distribution of snow cover reveals that in 1990 about 30.97% (678.87 km2), in 1999 about 25.77% (564.92 km2) area of the Gori Ganga watershed was under snow cover while in 2016 the snow cover was found only 15.08% (330.44 km2). These data suggest that due to global warming about 348.43 km2 snow cover of Gori Ganga watershed has been converted into non-snow cover area at an average rate 13.40 km2/year during the last 26 years.


2008 ◽  
Vol 61 (3-4) ◽  
pp. 103-116 ◽  
Author(s):  
Paulina Lopez ◽  
Pascal Sirguey ◽  
Yves Arnaud ◽  
Bernard Pouyaud ◽  
Pierre Chevallier

2021 ◽  
Vol 13 (4) ◽  
pp. 655
Author(s):  
Animesh Choudhury ◽  
Avinash Chand Yadav ◽  
Stefania Bonafoni

The Himalayan region is one of the most crucial mountain systems across the globe, which has significant importance in terms of the largest depository of snow and glaciers for fresh water supply, river runoff, hydropower, rich biodiversity, climate, and many more socioeconomic developments. This region directly or indirectly affects millions of lives and their livelihoods but has been considered one of the most climatically sensitive parts of the world. This study investigates the spatiotemporal variation in maximum extent of snow cover area (SCA) and its response to temperature, precipitation, and elevation over the northwest Himalaya (NWH) during 2000–2019. The analysis uses Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra 8-day composite snow Cover product (MOD10A2), MODIS/Terra/V6 daily land surface temperature product (MOD11A1), Climate Hazards Infrared Precipitation with Station data (CHIRPS) precipitation product, and Shuttle Radar Topography Mission (SRTM) DEM product for the investigation. Modified Mann-Kendall (mMK) test and Spearman’s correlation methods were employed to examine the trends and the interrelationships between SCA and climatic parameters. Results indicate a significant increasing trend in annual mean SCA (663.88 km2/year) between 2000 and 2019. The seasonal and monthly analyses were also carried out for the study region. The Zone-wise analysis showed that the lower Himalaya (184.5 km2/year) and the middle Himalaya (232.1 km2/year) revealed significant increasing mean annual SCA trends. In contrast, the upper Himalaya showed no trend during the study period over the NWH region. Statistically significant negative correlation (−0.81) was observed between annual SCA and temperature, whereas a nonsignificant positive correlation (0.47) existed between annual SCA and precipitation in the past 20 years. It was also noticed that the SCA variability over the past 20 years has mainly been driven by temperature, whereas the influence of precipitation has been limited. A decline in average annual temperature (−0.039 °C/year) and a rise in precipitation (24.56 mm/year) was detected over the region. The results indicate that climate plays a vital role in controlling the SCA over the NWH region. The maximum and minimum snow cover frequency (SCF) was observed during the winter (74.42%) and monsoon (46.01%) season, respectively, while the average SCF was recorded to be 59.11% during the study period. Of the SCA, 54.81% had a SCF above 60% and could be considered as the perennial snow. The elevation-based analysis showed that 84% of the upper Himalaya (UH) experienced perennial snow, while the seasonal snow mostly dominated over the lower Himalaya (LH) and the middle Himalaya (MH).


2012 ◽  
Vol 127 ◽  
pp. 271-287 ◽  
Author(s):  
G. Thirel ◽  
C. Notarnicola ◽  
M. Kalas ◽  
M. Zebisch ◽  
T. Schellenberger ◽  
...  

2021 ◽  
Author(s):  
Roberto Salzano ◽  
Christian Lanconelli ◽  
Giulio Esposito ◽  
Marco Giusto ◽  
Mauro Montagnoli ◽  
...  

<p><span>Polar areas are the most sensitive targets of </span><span>the </span><span>climate change and the continuous monitoring of the cryosphere represents a critical issue. The satellite remote sensing can fill this gap but further integration between remotely-sensed multi-spectral images and field data is crucial to validate retrieval algorithms and climatological models. The optical behaviour of snow, at different wavelengths, provides significant information about the micro-physical characteristics of the surface and this allow to discriminate different snow/ice covers. The aim of this work is to present an approach based on combining unmanned observations on spectral albedo and on the analysis of time-lapse images of sky and ground conditions in a</span><span>n </span><span>Ar</span><span>c</span><span>tic </span><span>test-site </span><span>(Svalbard, Norway). Terrestrial photography can provide, in fact, important information about the cloud cover and support the discrimination between white-sky or clear-sky illuminating conditions. Similarly, time-lapse cameras can provide a detailed description of the snow cover, estimating the fractional snow cover area. The spectral albedo was obtained by a narrow band device that was compared to a full-range commercial system and to remotely sensed data acquired during the 2015 spring/summer period at the </span><span>Amundsen - Nobile</span><span> Climate Change Tower (Ny </span><span>Å</span><span>lesund). The results confirmed the possibility to have continuous observations of the snow surface (microphisical) characteristics and highlighted the opportunity to monitor the spectral variations of snowed surfaces during the melting period. It was possible, </span><span>therefore,</span><span> to estimate spectral indexes, such as NDSI and SWIR albedo, and to found interesting links between both features and air/ground temperatures, wind-speed and precipitations. Different melting phases were detected and different processes were associated with the observed spectral variations.</span></p>


Sign in / Sign up

Export Citation Format

Share Document