scholarly journals Mathematical modeling of the beam spatial distribution for the laser with ceramic active elements

2019 ◽  
Vol 1348 ◽  
pp. 012105
Author(s):  
E A Sharandin ◽  
V L Kauts ◽  
T M Gladysheva ◽  
A V Kaiutienko ◽  
D I Portnov
1997 ◽  
Vol 12 (7) ◽  
pp. 1741-1746 ◽  
Author(s):  
Paul D. Tennis ◽  
Yunping Xi ◽  
Hamlin M. Jennings

A model based on mosaic pattern analysis is shown to have the potential to describe the complex shapes and spatial distribution of phases in the microstructures of multiphase materials. Several characteristics of both micrographs of portland cement pastes and images generated using the few parameters of the model are determined and, for the most part, agreement is good. The advantage is that spatial features of the microstructures can be captured by a few parameters.


Author(s):  
S. Shpirko ◽  

The subject of paper is the mathematical modeling of the spatial distribution of the medieval rural population. On the basis of the variational approach, two models of the hierarchy of centers are being developed, allowing with a high degree of reliability to identify the factors of the development of the settlement structure and to describe quantitatively the relationship between its most important parameters, such as density, population size and area.


Author(s):  
Nikita O. Shevtsov ◽  
Sergei V. Stepanov ◽  
Tatiana A. Pospelova

The main purpose of any model is to provide an opportunity to study the model object and the processes running in it for obtaining the predictive characteristics, among other reasons. In this connection, it is important to know, which mathematical models can help in analyzing and supporting oil deposit development, in particular, in assessing the mutual influence of production and injection wells. The characteristic features of mathematical modeling of field development include the oil deposits being located in natural formations that cannot be directly observed, as well as the complex filtration processes taking place in the formations due to the formation structure. Therefore, the mathematical modeling of development can be both complex and simple. On the one hand, it may use complex numerical hydrodynamic models, based on the understanding of spatial distribution of reservoir properties, which have an opportunity for detailed description of filtration processes. On the other hand, the modeling may use relatively simple analytical models, which have no need to specify the spatial distribution of properties; yet, the description of filtration processes is significantly simplified in comparison with hydrodynamics. Therefore, the practical value of the modeling result depends on the right approach to modeling. The task of estimating the mutual influence of wells requires the choice of numerical or analytical model to be based on understanding of the predictive ability of the models under consideration. Since such ability depends both on the ability to describe filtration processes in detail and on the need to take into account the spatial distribution of reservoir properties, it is initially impossible to conclude, which model has the best predictive ability. It becomes possible to reveal the level of predictive ability when considering the problem of mutual well impact assessment for synthetic models of oil deposits. This article presents the results of studies in the case of ten synthetic models. Numerical hydrodynamic models and analytical CRM models were set up for “actual” data of well operation. Using the retrospective test method, the authors have shown that the analytical models have a higher predictive power than the numerical models.


BIOPHYSICS ◽  
2009 ◽  
Vol 54 (5) ◽  
pp. 652-654
Author(s):  
A. B. Medvinsky ◽  
A. V. Rusakov ◽  
A. Chakraborty ◽  
B. -L. Li ◽  
A. I. Marchenko ◽  
...  

Author(s):  
L. D. Jackel

Most production electron beam lithography systems can pattern minimum features a few tenths of a micron across. Linewidth in these systems is usually limited by the quality of the exposing beam and by electron scattering in the resist and substrate. By using a smaller spot along with exposure techniques that minimize scattering and its effects, laboratory e-beam lithography systems can now make features hundredths of a micron wide on standard substrate material. This talk will outline sane of these high- resolution e-beam lithography techniques.We first consider parameters of the exposure process that limit resolution in organic resists. For concreteness suppose that we have a “positive” resist in which exposing electrons break bonds in the resist molecules thus increasing the exposed resist's solubility in a developer. Ihe attainable resolution is obviously limited by the overall width of the exposing beam, but the spatial distribution of the beam intensity, the beam “profile” , also contributes to the resolution. Depending on the local electron dose, more or less resist bonds are broken resulting in slower or faster dissolution in the developer.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Sign in / Sign up

Export Citation Format

Share Document