THE STUDY OF THE PREDICTIVE ABILITY OF NUMERICAL AND ANALYTICAL MODELS (THE CASE OF MUTUAL WELL IMPACT EVALUATION)

Author(s):  
Nikita O. Shevtsov ◽  
Sergei V. Stepanov ◽  
Tatiana A. Pospelova

The main purpose of any model is to provide an opportunity to study the model object and the processes running in it for obtaining the predictive characteristics, among other reasons. In this connection, it is important to know, which mathematical models can help in analyzing and supporting oil deposit development, in particular, in assessing the mutual influence of production and injection wells. The characteristic features of mathematical modeling of field development include the oil deposits being located in natural formations that cannot be directly observed, as well as the complex filtration processes taking place in the formations due to the formation structure. Therefore, the mathematical modeling of development can be both complex and simple. On the one hand, it may use complex numerical hydrodynamic models, based on the understanding of spatial distribution of reservoir properties, which have an opportunity for detailed description of filtration processes. On the other hand, the modeling may use relatively simple analytical models, which have no need to specify the spatial distribution of properties; yet, the description of filtration processes is significantly simplified in comparison with hydrodynamics. Therefore, the practical value of the modeling result depends on the right approach to modeling. The task of estimating the mutual influence of wells requires the choice of numerical or analytical model to be based on understanding of the predictive ability of the models under consideration. Since such ability depends both on the ability to describe filtration processes in detail and on the need to take into account the spatial distribution of reservoir properties, it is initially impossible to conclude, which model has the best predictive ability. It becomes possible to reveal the level of predictive ability when considering the problem of mutual well impact assessment for synthetic models of oil deposits. This article presents the results of studies in the case of ten synthetic models. Numerical hydrodynamic models and analytical CRM models were set up for “actual” data of well operation. Using the retrospective test method, the authors have shown that the analytical models have a higher predictive power than the numerical models.

2014 ◽  
Vol 42 (1) ◽  
pp. 2-15
Author(s):  
Johannes Gültlinger ◽  
Frank Gauterin ◽  
Christian Brandau ◽  
Jan Schlittenhard ◽  
Burkhard Wies

ABSTRACT The use of studded tires has been a subject of controversy from the time they came into market. While studded tires contribute to traffic safety under severe winter conditions by increasing tire friction on icy roads, they also cause damage to the road surface when running on bare roads. Consequently, one of the main challenges in studded tire development is to reduce road wear while still ensuring a good grip on ice. Therefore, a research project was initiated to gain understanding about the mechanisms and influencing parameters involved in road wear by studded tires. A test method using the institute's internal drum test bench was developed. Furthermore, mechanisms causing road wear by studded tires were derived from basic analytical models. These mechanisms were used to identify the main parameters influencing road wear by studded tires. Using experimental results obtained with the test method developed, the expected influences were verified. Vehicle driving speed and stud mass were found to be major factors influencing road wear. This can be explained by the stud impact as a dominant mechanism. By means of the test method presented, quantified and comparable data for road wear caused by studded tires under controllable conditions can be obtained. The mechanisms allow predicting the influence of tire construction and variable operating conditions on road wear.


2020 ◽  
pp. 78-82
Author(s):  
A.Р. Evdokimov ◽  
A.N. Gromyiko ◽  
A.A. Mironov

Analytical models of static and dynamic impact elastoplastic deformation of tubular energy-absorbing elements constituting a tubular plastic shock absorber are proposed. The developed models can be used for the calculation and design of these shock absorbers. Keywords static and dynamic elastoplastic deformation, mathematical modeling, tubular energy-absorbing element, tubular plastic shock absorber, impact loading. [email protected]


2020 ◽  
Author(s):  
Sudad H Al-Obaidi ◽  
Galkin AP

Knowledge of the properties of reservoir oil is necessary when calculating reserves, creating projects development, creating hydrodynamic models of development objects. Reservoir oil properties are determined by downhole samples taken, as usual, from exploration and production wells. In some cases, it is impossible to create conditions for the selection of high-quality downhole samples at exploration and production wells. In such cases, we must use samples of surface oil to obtain information about the reservoir properties of this oil. In this work and as a result of the analysis of the accumulated data, dependencies with a high degree of correlation were obtained, which make it possible to quickly assess the expected parameters of reservoir oil, having only the density of surface oil.


2019 ◽  
Vol 8 (4) ◽  
pp. 3294-3302

The Optimal sidetrack time (tR-OPT) has been estimated for uncertainty of the probability of success (POS) of the sidetrack operation, reservoir properties and economics for a reservoir under primary recovery mechanism. The case studies worked on in literature considered in this study are for those for primary recovery in which production profiles were represented by empirical and analytical models. However, not all recovery can be adequately replicated by these analytical models. Hence, the need to apply proxy models not just to predict cumulative production but net-present-value (NPV). In this study the analysis of a decision tree with several branches is carried out to maximize NPV that is evaluated under the influence of production stoppage due to the sidetrack into another non-communicating upper zone with uncertainty of reservoir properties. The optimal sidetrack time adds a severe non-linearity in the response of the resulting proxy model and expected monetary value (EMV), the objective function. Multi -objective functions of proxy models over time-intervals for highly time impacted terminal branches, known as split design was applied to evaluate when to conduct a well sidetrack operation under risk and uncertainty in order to resolve severe non-linearity of the NPV solved by a standard optimization algorithm in a spreadsheet. The Predicted values of optimal sidetrack time by the developed workflow was relatively reasonable and highly satisfactory in comparison with simulation results and that of empirical and analytical models. Though, further performance improvement is possible, the constraint on computational time for multi-objective optimization must be weighed against the desired result. Monte Carlo implementation on EMV based on uncertainty of reservoir properties and varying POS acknowledges the fact that for favourable POS, that is values approaching 1.0, tR-OPT clustered at early production life with a spike and the later for unfavourable values.


1997 ◽  
Vol 12 (7) ◽  
pp. 1741-1746 ◽  
Author(s):  
Paul D. Tennis ◽  
Yunping Xi ◽  
Hamlin M. Jennings

A model based on mosaic pattern analysis is shown to have the potential to describe the complex shapes and spatial distribution of phases in the microstructures of multiphase materials. Several characteristics of both micrographs of portland cement pastes and images generated using the few parameters of the model are determined and, for the most part, agreement is good. The advantage is that spatial features of the microstructures can be captured by a few parameters.


1999 ◽  
Vol 277 (4) ◽  
pp. H1478-H1483 ◽  
Author(s):  
Ron Joseph Leor-Librach ◽  
Ben-Zion Bobrovsky ◽  
Sarah Eliash ◽  
Elieser Kaplinsky

The purpose of this study was mathematical modeling of the heart rate (HR) response to isoproterenol (Iso) infusion. We developed a computerized system for the controlled increase of HR by Iso, based on a modified proportional-integral controller. HR was measured in conscious, freely moving rats. We found that the steady-state HR can be described as a hyperbolic power function of the steady-state Iso flow rate. This dependence was coupled with a first-order difference equation to form a pharmacodynamic model that reliably describes the relationship between HR and Iso flow for any arbitrary form of Iso flow function. In simulation studies, we showed that the model continued to follow the HR curve from real-time experiments far beyond the initial “learning interval” from which its parameters were calculated. Our results suggest that the predictive ability and the simplicity of calculating the parameters render this pharmacodynamic model appropriate for use within future advanced, model-based, adaptive control systems and as a part of larger cardiovascular models.


2019 ◽  
Vol 265 ◽  
pp. 07019
Author(s):  
Lyudmila Adamaуtis ◽  
Nadezhda Zonova ◽  
Elena Petrova ◽  
Nadezhda Palesheva ◽  
Natalia Gritsuk

The article deals with the fundamental categories of company analysis in a market economy such as its financial results and financial condition. Special attention is given to the study and justification of the mutual influence and dependencies between them with the help of formalized analytical models, non-formalized logical and empirical studies and conclusions. In particular, the authors of the article justify the mechanism of the influence of profit and profitability on bankruptcy risks. They underline the importance of obtaining the required amount of profit and the correctness of its use. Moreover, the authors propose criteria for evaluating the rational distribution and use of the company's net profit. The influence of the profit capitalization factor is confirmed by the example of a model of sustainable economic growth. The authors emphasize the importance of the issues under consideration in the development of management decisions, including the formation of dividend policy. The article also presents the authors' approach to some methodological aspects of analyzing the use of profits. The research is based on the financial statements of Russian construction companies. However, these models can be applied to commercial companies in other fields of activity.


2019 ◽  
Vol 1348 ◽  
pp. 012105
Author(s):  
E A Sharandin ◽  
V L Kauts ◽  
T M Gladysheva ◽  
A V Kaiutienko ◽  
D I Portnov

2005 ◽  
Vol 127 (2) ◽  
pp. 186-191 ◽  
Author(s):  
S. Kunaporn ◽  
M. Ramulu ◽  
M. Hashish

Waterjet peening is a recent promising method in surface treatment. It has the potential to induce compressive residual stresses that benefit the fatigue life of materials similar to the conventional shot peening process. However, there are no analytical models that incorporate process parameters (i.e., supply pressure, jet exposure time, and nozzle traverse rate, etc) to allow predicting the optimized peening process. Mathematical modeling of high-pressure waterjet peening was developed in this study to describe the relation between the waterjet peening parameters and the resulting material modifications. Results showed the possibility of using the proposed mathematical model to predict an initial range for effective waterjet peening under the variation of waterjet peening conditions. The high cycle fatigue tests were performed to validate the proposed model and fatigue test results showed good agreement with the predictions.


Sign in / Sign up

Export Citation Format

Share Document