scholarly journals Effect of Water Content in Methanol on The Performance and Exhaust Emissions of Direct Injection Diesel Engines Fueled by Diesel Fuel and Jatropha Oil Blends with EGR System

2019 ◽  
Vol 1373 ◽  
pp. 012010
Author(s):  
Johan Firmansyah ◽  
Syaiful ◽  
Eflita Yohana
2018 ◽  
Vol 49 ◽  
pp. 02010
Author(s):  
Syarifudin ◽  
Syaiful ◽  
Eflita Yohana

Diesel engines are widely used in industry, automotive, power generation due to better reliability and higher efficiency. However, diesel engines produce high smoke emissions. The main problem of diesel engine is actually the use of fossil fuels as a source of energy whose availability is diminishing. Therefore alternative fuels for diesel fuels such as jatropha and butanol are needed to reduce dependence on fossil fuels. In this study, the effect of butanol usage on fuel consumption and smoke emissions of direct injection diesel engine fueled by jatropha oil and diesel fuel with cold EGR system was investigated. The percentage of butanol was in the range of 5 to 15%, jatropha oil was in the range of 10 to 30% and the balance was diesel fuel. Cold EGR was varied through valve openings from 0 to 100% with 25% intervals. The experimental data shows that the BSFC value increases with increasing percentage of butanol. In addition, the use of EGR results in a higher increase of BSFC than that without EGR. While the addition of butanol into a blend of jatropha oil and diesel fuel causes a decrease in smoke emissions. The results also informed that the use of EGR in the same fuel blend led to increased smoke emissions.


2014 ◽  
Vol 660 ◽  
pp. 426-430 ◽  
Author(s):  
Syaiful ◽  
Sobri ◽  
Nathanael P. Tandian

The aim of this study is to experimentally investigate an effect of low and high purity methanol on a performance and smoke emission of diesel engine with cooled EGR system fueled by diesel fuel and jatropha oil blend. A four-stroke water cooled direct injection (DI) diesel engine with cooled EGR system was used in this work. The diesel engine was fueled by diesel fuel, jatropha oil and low (LPM) or high (HPM) purity methanol blends at the ratio of 100/0/0, 75/20/5, 70/20/10 and 65/20/15 % on volume basis respectively for the variation of engine loads in the range of 25 to 100% with 25% increments at 2000 rpm. Each load for every fuel blend was given by the 0% and 16.5% EGR rates. The results are found that the brake power for diesel engine fueled by diesel fuel, jatropha oil and LPM is approximately 8% lower than that of diesel engine fueled with the neat diesel, while it increases to 5.24% at the low load and reduces to 6.11% at the high load by injecting HPM in the fuel blends. At the same case, BSFC increases approximately 4.5% by injecting LPM in the fuel blends. The brake thermal efficiency rises approximately by 3.3% with LPM in the fuel blends, whereas it increases approximately 6% by injecting HPM. The smoke opacity reduces approximately by 70% with LPM or HPM in the fuel blends.


Author(s):  
M M Roy

This study investigated the effect of n-heptane and n-decane on exhaust odour in direct injection (DI) diesel engines. The prospect of these alternative fuels to reduce wall adherence and overleaning, major sources of incomplete combustion, as well as odorous emissions has been investigated. The n-heptane was tested as a low boiling point fuel that can improve evaporation as well as wall adherence. However, the odour is a little worse with n-heptane and blends than that of diesel fuel due to overleaning of the mixture. Also, formaldehyde (HCHO) and total hydrocarbon (THC) in the exhaust increase with increasing n-heptane content. The n-decane was tested as a fuel with a high cetane number that can improve ignition delay, which has a direct effect on wall adherence and overleaning. However, with n-decane and blends, the odour rating is about 0.5-1 point lower than for diesel fuel. Moreover, the aldehydes and THC are significantly reduced. This is due to less wall adherence and proper mixture formation.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


Fuel ◽  
2018 ◽  
Vol 222 ◽  
pp. 718-732 ◽  
Author(s):  
Pierpaolo Napolitano ◽  
Chiara Guido ◽  
Carlo Beatrice ◽  
Leonardo Pellegrini

Fuel ◽  
2017 ◽  
Vol 193 ◽  
pp. 419-431 ◽  
Author(s):  
R. Dhanasekaran ◽  
V. Krishnamoorthy ◽  
D. Rana ◽  
S. Saravanan ◽  
A. Nagendran ◽  
...  

Infotekmesin ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 18-22
Author(s):  
Syarifudin Syarifudin ◽  
Syaiful Syaiful

Diesel engines are widely used as driving forces in vehicles and industry due to fuel efficiency and high output power. The wide use of diesel engines triggers an increase in fuel consumption and exhaust emissions that are harmful to health. Jatropha is a renewable fuel as a solution to increase fuel consumption. However, the high viscosity and low calorific value result in reduced performance and increased exhaust emissions. Butanol has a high oxygen content and cetane number and low viscosity compared to diesel and jatropha. Addition of butanol is possible to reduce the decrease in performance and exhaust emissions of diesel engines. this study evaluates the effect of butanol on reducing Isuzu 4JB1 diesel engine direct injection emissions. Percentage of blend used 70/30/0, 65/30/5, 60/30/10, and 55/40/15 based on volume. Tests are carried out at 2500 constant turns with a loading of 25% to 100% using the EGR system. The experimental results showed the presence of butanol caused a decrease in soot emissions produced by diesel engines


2019 ◽  
Vol 1 (2) ◽  
pp. 35-44
Author(s):  
Ramesh C ◽  
Murugesan A ◽  
Vijayakumar C

Diesel engines are widely used for their low fuel consumption and better efficiency. Fuel conservation, efficiency and emission control are always the investigation points in the view of researchers in developing energy system. India to search for a suitable environmental friendly alternative to diesel fuel. The regulated emissions from diesel engines are carbon monoxide (CO), Hydrocarbons (HC), NOx and Particulate matter. It creates cancer, lungs problems, headaches and physical and mental problems of human. This paper focuses on the substitution of fossil fuel diesel with renewable alternatives fuel such as Biodiesel. Biodiesel is much clear than fossil diesel fuel and it can be used in any diesel engine without major modification. The experiment was conducted in a single-cylinder four-stroke water-cooled 3.4 kW direct injection compression ignition engine fueled with non-edible Pungamia oil biodiesel blends. The experimental results proved that up to 40% of Pungamia oil biodiesel blends give better results compared to diesel fuel. The AVL 444 di-gas analyzer and AVL 437 smoke meter are used to measure the exhaust emissions from the engine. The observation of results, non-edible Pongamia biodiesel blended fuels brake thermal efficiency (3.59%) is improved and harmful emissions like CO, unburned HC, CO2, Particulate matter, soot particles, NOx and smoke levels are 29.67%, 26.65%, 33.47%, 39.57%, +/- 3.5 and 41.03% is decreased respectively compared to the diesel fuel. This is due to biodiesel contains the inbuilt oxygen content, ignition quality, carbon burns fully, less sulphur content, no aromatics, complete CO2 cycle.


Sign in / Sign up

Export Citation Format

Share Document