Low and High Purity Methanol Effect on Performance and Smoke Emission of Direct Injection Diesel Engine with Cooled EGR Fueled by Diesel Fuel and Jatropha Oil Blends

2014 ◽  
Vol 660 ◽  
pp. 426-430 ◽  
Author(s):  
Syaiful ◽  
Sobri ◽  
Nathanael P. Tandian

The aim of this study is to experimentally investigate an effect of low and high purity methanol on a performance and smoke emission of diesel engine with cooled EGR system fueled by diesel fuel and jatropha oil blend. A four-stroke water cooled direct injection (DI) diesel engine with cooled EGR system was used in this work. The diesel engine was fueled by diesel fuel, jatropha oil and low (LPM) or high (HPM) purity methanol blends at the ratio of 100/0/0, 75/20/5, 70/20/10 and 65/20/15 % on volume basis respectively for the variation of engine loads in the range of 25 to 100% with 25% increments at 2000 rpm. Each load for every fuel blend was given by the 0% and 16.5% EGR rates. The results are found that the brake power for diesel engine fueled by diesel fuel, jatropha oil and LPM is approximately 8% lower than that of diesel engine fueled with the neat diesel, while it increases to 5.24% at the low load and reduces to 6.11% at the high load by injecting HPM in the fuel blends. At the same case, BSFC increases approximately 4.5% by injecting LPM in the fuel blends. The brake thermal efficiency rises approximately by 3.3% with LPM in the fuel blends, whereas it increases approximately 6% by injecting HPM. The smoke opacity reduces approximately by 70% with LPM or HPM in the fuel blends.

2018 ◽  
Vol 49 ◽  
pp. 02010
Author(s):  
Syarifudin ◽  
Syaiful ◽  
Eflita Yohana

Diesel engines are widely used in industry, automotive, power generation due to better reliability and higher efficiency. However, diesel engines produce high smoke emissions. The main problem of diesel engine is actually the use of fossil fuels as a source of energy whose availability is diminishing. Therefore alternative fuels for diesel fuels such as jatropha and butanol are needed to reduce dependence on fossil fuels. In this study, the effect of butanol usage on fuel consumption and smoke emissions of direct injection diesel engine fueled by jatropha oil and diesel fuel with cold EGR system was investigated. The percentage of butanol was in the range of 5 to 15%, jatropha oil was in the range of 10 to 30% and the balance was diesel fuel. Cold EGR was varied through valve openings from 0 to 100% with 25% intervals. The experimental data shows that the BSFC value increases with increasing percentage of butanol. In addition, the use of EGR results in a higher increase of BSFC than that without EGR. While the addition of butanol into a blend of jatropha oil and diesel fuel causes a decrease in smoke emissions. The results also informed that the use of EGR in the same fuel blend led to increased smoke emissions.


Author(s):  
P. Venkateswara Rao ◽  
S. Ramesh ◽  
S. Anil Kumar

The primary objective of this work is to reduce the particulate matter (PM) or smoke emission and oxides of nitrogen (NOx emissions) the two important harmful emissions and to increase the performance of diesel engine by using oxygenated additives with diesel as blend fuel. Formulation of available diesel fuel with additives is an advantage than considering of engine modification for improvement of higher output. From the available additives, three oxygenates are selected for experimentation by considering many aspects like cost, content of oxygen, flashpoint, solubility, seal etc. The selected oxygenates are Ethyl Aceto Acetate (EAA), Diethyl Carbonate (DEC), Diethylene Glycol (DEG). These oxygenates are blended with diesel fuel in proportions of 2.5%, 5% and 7.5% by volume and experiments were conducted on a single cylinder naturally aspirated direct injection diesel engine. From the results the conclusion are higher brake power and lower BSFC obtained for DEC blends at 7.5% of additive as compared to EAA, DEG and diesel at full load. In case of DEC blends the smoke emission is lower, whereas NOx emissions are very low in case of EAA additive blend fuels. The DEC can be considered is the best oxygenating additive to be blend with diesel in a proportion of 7.5% by volume.


Energy ◽  
2012 ◽  
Vol 43 (1) ◽  
pp. 214-224 ◽  
Author(s):  
Dimitrios C. Rakopoulos ◽  
Constantine D. Rakopoulos ◽  
Evangelos G. Giakoumis ◽  
Athanasios M. Dimaratos

Author(s):  
Yaodong Wang ◽  
Neil Hewitt ◽  
Philip Eames ◽  
Shengchuo Zeng ◽  
Jincheng Huang ◽  
...  

Experimental tests have been carried out to evaluate the performance and emissions characteristics of a diesel engine when fuelled by blends of 25% vegetable oil with 75% diesel fuel, 50% vegetable oil with 50% diesel fuel, 75% vegetable oil with 25% diesel fuel, and 100% vegetable oil, compared with the performance, emissions characteristics of 100% diesel fuel. The series of tests were conducted and repeated six times using each of the test fuels. 100% of ordinary diesel fuel was also used for comparison purposes. The engine worked at a fixed speed of 1500 r/min, but at different loads respectively, i.e. 0%, 25%, 50%, 75% and 100% of the engine load. The performance and the emission characteristics of exhaust gases of the engine were compared and analyzed. The experimental results showed that the carbon monoxide (CO) emission from the vegetable oil and vegetable oil/diesel fuel blends were nearly all higher than that from pure diesel fuel at the engine 0% load to 75% load. Only at the 100% engine load point, the CO emission of vegetable oil and vegetable oil/diesel fuel blends was lower than that of diesel fuel. The hydrocarbon (HC) emission of vegetable oil and vegetable/diesel fuel blends were lower than that of diesel fuel, except that 50% of vegetable oil and 50% diesel fuel blend was a little higher than that of diesel fuel. The oxides of nitrogen (NOx) emission of vegetable oil and vegetable oil/diesel fuel blends, at the range of tests, were lower than that of diesel fuel.


Author(s):  
Jakub Čedík ◽  
Martin Pexa ◽  
Bohuslav Peterka ◽  
Miroslav Müller ◽  
Michal Holubek ◽  
...  

Liquid biofuels for compression ignition engines are often based on vegetable oils. In order to be used in compression ignition engine the vegetable oils have to be processed because of their high viscosity or it is also possible to use vegetable oils in fuel blends. In order to decrease the viscosity of the fuel blends containing crude vegetable oil the alcohol-based fuel admixtures can be used. The paper describes the effect of rapeseed oil–diesel fuel–n-butanol blends on combustion characteristics and solid particles production of turbocharged compression ignition engine. The 10% and 20% concentrations of n-butanol in the fuel blend were measured and analysed. The engine Zetor 1204, located in tractor Zetor Forterra 8641 with the power of 60kW and direct injection was used for the measurement. The engine was loaded through power take off shaft of the tractor using mobile dynamometer MAHA ZW500. The measurement was carried out in stabilized conditions at 20%, 60% and 100% engine load. The engine speed was kept at 1950 rpm. Tested fuel blends showed lower production of solid particles than diesel fuel and lower peak cylinder pressure and with increasing concentration of n-butanol in the fuel blend the ignition delay was prolonged and premixed phase of combustion was increased.


2021 ◽  
Vol 14 (1) ◽  
pp. 345
Author(s):  
Mostafa Kiani Deh Kiani ◽  
Sajad Rostami ◽  
Gholamhassan Najafi ◽  
Mohamed Mazlan

Contrary to energy, exergy may be destroyed due to irreversibility. Exergy analysis can be used to reveal the location, and amount of energy losses of engines. Despite the importance of the exergy analysis, there is a lack of information in this area, especially when the engine is fueled with biodiesel–diesel fuel blends under various injection operating parameters. Thus, in this research, the exergy analysis of a direct-injection diesel engine using biodiesel–diesel fuel blends was performed. The fuel blends (B0, B20, B40, and B100) were injected into cylinders at pressures of 200 and 215 bars. Moreover, the simulation of exergy and energy analyses was done by homemade code. The simulation model was verified by compression of experimental and simulation in-cylinder pressure data. The results showed there was good agreement between simulation data and experimental ones. Results indicated that the highest level of in-cylinder pressure at injection pressure of 215 bars is more than that of 200 bars. Moreover, by increasing the percentage of biodiesel, the heat transfer exergy, irreversibility, burnt fuel, and exergy indicator decreased, but the ratio of these exergy parameters (except for heat transfer exergy) to fuel exergy increased. These ratios increased from 46 to 50.54% for work transfer exergy, 16.57 to 17.97% for irreversibility, and decreased from 16 to 15.49% for heat transfer exergy. In addition, these ratios at 215 bars are higher than at 200 bars for all fuels. However, with increasing the injection pressure and biodiesel concentration in fuel blends, the exergy and energy efficiencies increased.


Sign in / Sign up

Export Citation Format

Share Document