scholarly journals Systemic issues of the power plants APCS development technology and performance paradigm

2020 ◽  
Vol 1683 ◽  
pp. 042057
Author(s):  
Yu S Tverskoy ◽  
A V Golubev ◽  
I K Muravev ◽  
A N Nikonorov ◽  
I A Kolesov ◽  
...  
Author(s):  
C-J Liao ◽  
W-F Huang ◽  
Y-M Wang ◽  
S-F Suo ◽  
X-F Liu

The study on the mechanism and performance of the mechanical seals in reactor coolant pumps (RCPs) is very important for the safe operations of pressurized water reactor power plants. By exploring the operating mechanism of the first seal of the hydrostatic mechanical seal in RCPs, an analytical fluid–solid strong-interaction model of the seal is proposed in this article. The model holds that the mechanical deformations of the seal assembly are dominated by the deflections of the seal rings, and this idea is demonstrated by the numerical simulation result of a fluid–solid interaction (FSI) model. Using the analytical FSI model, the regularity that the leakage rate of the first seal varies with the differential pressure in a RCP is obtained, and compared with the operational data, which is used to verify the model. Based on the understanding of the reliability of the seal, a dimensionless parameter Λ that acts as an attribute to the reliability is proposed in this article. Using the analytical FSI model and Λ as the optimization algorithm and optimization object, respectively, the optimum designs about the seal faceplateconfigurations are performed. Also, the specific optimization conclusions are given simultaneously.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jashanpreet Singh ◽  
Jatinder Pal Singh

Purpose This study aims to deal with development and performance analysis of high-velocity oxy-fuel (HVOF) thermally sprayed Mo2C-based WC-CoCr (tungsten carbine cobalt chrome) (Co-10% and Cr-4%) cermet coating deposited on the pump impeller steel 316 L. Design/methodology/approach In this work, a study was carried out by modifying the conventional WC-CoCr powder with a small addition of molybdenum carbide (Mo2C). Reinforcement was done by 1–4 wt.% addition of Mo2C feedstocks in WC-CoCr powder by using a jar ball mill process. The design of experiment was implemented for optimization of the percentage of Mo2C feedstock. L16 (4 × 4) orthogonal array was used to design the experiments for erosion output for the input parameters namely velocity, particle size, concentration and Mo2C proportion. Findings Results show that the Mo2C-based WC-CoCr coating provides better microhardness as compared to conventional WC-CoCr coating. The present study also reveals that the deposition of conventional WC-CoCr coating has improved the wear resistance of SS 316 L by 9.98%. However, the slurry erosion performance of conventional WC-CoCr coating was improved as 69.6% by the addition of 3% Mo2C. Practical implications WC-CoCr coatings are universally used for protecting the equipment and machinery from abrasion, erosion and corrosion. So, the 3% Mo2C-based WC-CoCr can be useful in power plants and various industries like mining, chemical, automobile, cementing and food processing industries. Originality/value A new HVOF coating has been developed by the addition of Mo2C feedstock in WC-CoCr powder (Co 10% and Cr 4%) and the percentage of Mo2C feedstock was optimized to improve the tribological behavior of WC-CoCr coating.


1999 ◽  
Author(s):  
Luis Correas ◽  
Ángel Martínez ◽  
Antonio Valero

Abstract Diagnosis of the performance of energy was theoretically developed based on the Structural Theory (Valero, Serra and Lozano, 1993), and traditionally Thermoeconomics have usually been applied to the design of power plants and comparison between alternatives. However, the application of thermoeconomic techniques to actual power plants has always to face the generally poor quality of measurement readings from the standard field instrumentation as an unavoidable first step. The proposed methodology focuses on measurement uncertainty estimation and performance calculation by means of data reconciliation techniques, in order to obtain the most confident plant balance upon the available instrumentation. The formulation of the Structural Theory has been applied to a combined cycle, where the Fuel-Product relationships at the component level must be optimally defined for a correct malfunction interpretation. This set of relationships determines the ability to diagnose and the level of the diagnostics obtained. The paper reports the application of the methodology to a 280 MW rated combined cycle, where performance diagnosis is illustrated with results from a collection of actual operation data sets. The results show that data reconciliation yields sufficient accuracy to conduct a thermoeconomic analysis, and how the estimated impact on fuel correlates with physical causes. Hence the feasibility of thermoeconomic analysis of plant operation is demonstrated.


1968 ◽  
Vol 5 (03) ◽  
pp. 307-310
Author(s):  
G. Gilbert Wyland

Considerations governing selection of power plants for yachts include determination of power for speed and performance desired. This, in turn, requires determination of the best compromise on shaft revolutions compatible with limitations of propeller diameter and possible effects of cavitation. The problem as to whether to use diesel or gasoline engines is also investigated. Curves are given which give general criteria for estimating power over a large range of speeds. Accessories including reverse gears, reduction gears, and their mode of control are discussed. Propeller design in reference to engine rating is investigated, it being pointed out that on many current engines a propeller sized for maximum power and revolutions will be much too small for the horsepower available at a continuous rating.


2012 ◽  
Vol 1 (4) ◽  
pp. 56-69
Author(s):  
Farzin Shama ◽  
Gholam Hossein Roshani ◽  
Sobhan Roshani ◽  
Arash Ahmadi ◽  
Saber Karami

Producing non-polluting renewable energy in large scale is essential for sustainability of future developments in industry and human society. Among renewable energy resources, solar energy takes a special place because of its free accessibility and affordability. However, the optimization of its production and consumption processes poses important concerns, essentially in the affordability issue. This paper investigates several optimization and performance issues regarding solar panel converters using two-axis controlled solar tracer that has been practically implemented in comparison with fixed converter panels. Results shown in tables and graphs demonstrate clearly the advantages and disadvantages of the methods. Based on these results, large scale solar power plants are being suggested to be equipped with similar devices.


2016 ◽  
Vol 7 (2) ◽  
pp. 42-49
Author(s):  
Nick Shykinov ◽  
Robert Rulko ◽  
Dariusz Mroz

Abstract In the context of energy demands by growing economies, climate changes, fossil fuel pricing volatility, and improved safety and performance of nuclear power plants, many countries express interest in expanding or acquiring nuclear power capacity. In the light of the increased interest in expanding nuclear power the supply chain for nuclear power projects has received more attention in recent years. The importance of the advanced planning of procurement and manufacturing of components of nuclear facilities is critical for these projects. Many of these components are often referred to as long-lead items. They may be equipment, products and systems that are identified to have a delivery time long enough to affect directly the overall timing of a project. In order to avoid negatively affecting the project schedule, these items may need to be sourced out or manufactured years before the beginning of the project. For nuclear facilities, long-lead items include physical components such as large pressure vessels, instrumentation and controls. They may also mean programs and management systems important to the safety of the facility. Authorized nuclear operator training, site evaluation programs, and procurement are some of the examples. The nuclear power industry must often meet very demanding construction and commissioning timelines, and proper advanced planning of the long-lead items helps manage risks to project completion time. For nuclear components there are regulatory and licensing considerations that need to be considered. A national nuclear regulator must be involved early to ensure the components will meet the national legal regulatory requirements. This paper will discuss timing considerations to address the regulatory compliance of nuclear long-lead items.


Sign in / Sign up

Export Citation Format

Share Document