scholarly journals Actual energy savings of more than 1000 renovated buildings in Geneva

2021 ◽  
Vol 2042 (1) ◽  
pp. 012145
Author(s):  
Basile Grandjean ◽  
Stefan Schneider ◽  
Pierre Hollmuller

Abstract This study quantifies the annual energy-related retrofit rate of the Geneva building stock (1.7%), based on data concerning the delivered construction permits over the 2010 – 2018 period. By cross-cutting with final energy demand before and after retrofit, we derive an energy-efficient retrofit rate (0.6% for an improvement of 1 class at least, 0.2% for 2 classes at least). Results are analysed as a function of the construction period, as well as of the energy demand before retrofit.

2021 ◽  
Vol 6 (2) ◽  
pp. 03-17
Author(s):  
Gazal Dandia ◽  
◽  
Pratheek Sudhakaran ◽  
Chaitali Basu ◽  
◽  
...  

Introduction: High energy consumption by buildings is a great threat to the environment and one of the major causes of climate change. With a population of 1.4 billion people and one of the fastest-growing economies in the world, India is extremely vital for the future of global energy markets. The energy demand for construction activities continues to rise and it is responsible for over one-third of global final energy consumption. Currently, buildings in India account for 35% of total energy consumption and the value is growing by 8% annually. Around 11% of total energy consumption are attributed to the commercial sector. Energy-efficient retrofitting of the built environments created in recent decades is a pressing urban challenge. Presently, most energy-efficient retrofit projects focus mainly on the engineering aspects. In this paper, we evaluate various retrofitting options, such as passive architectural interventions, active technological interventions, or a combination of both, to create the optimum result for the selected building. Methods: Based on a literature study and case examples, we identified various energy-efficient retrofit measures, and then examined and evaluated those as applied to the case study of Awas Bhawan (Rajasthan Housing Board Headquarters), Jaipur, India. For the evaluation, we developed a simulation model using EQuest for each energy measure and calculated the resultant energy savings. Then, based on the cost of implementation and the cost of energy saved, we calculated the payback period. Finally, an optimum retrofit solution was formulated with account for the payback period and ease of installation. Results and discussion: The detailed analysis of various energy-efficient retrofit measures as applied to the case study indicates that the most feasible options for retrofit resulting in optimum energy savings with short payback periods include passive architecture measures and equipment upgrades.


Author(s):  
Johannes Wagner ◽  
Mirko Schäfer ◽  
Long Phan ◽  
Alexander Schlüter ◽  
Jens Hesselbach ◽  
...  

Many industries have significant requirements regarding temperature control, air humidity and air pollution which must be strictly adhered to avoid bacterial formation and contamination. High refrigeration specifications are only required in certain areas. However, these specifications are often applied across the whole production hall which results in unnecessarily high energy demand and usage. A more energy efficient approach is the localized cooling of the product, which conditions the direct environment of the product only. This leads to the consideration of separating or localizing the products specifically requiring refrigeration in the production hall. In this paper, localized product cooling systems are analyzed in order to identify the savings potential associated with a localized refrigeration system. The study shows the energy savings potential for a manufacturing company located in three different locations: in Germany, Canada and the USA.


2019 ◽  
Vol 11 (2) ◽  
pp. 521 ◽  
Author(s):  
Vaclovas Miskinis ◽  
Arvydas Galinis ◽  
Inga Konstantinaviciute ◽  
Vidas Lekavicius ◽  
Eimantas Neniskis

The paper provides a comparative analysis of economic growth in Estonia, Latvia and Lithuania and discusses differences in development of the main sectors during the period 2000–2016. Based on detailed analysis of energy sector development, the driving factors influencing changes in primary energy consumption in each country and in the Baltic region are discovered. Increase of renewable energy sources (RES) consumption in the Baltic region over this period by 73.6% is emphasized. The paper presents valuable insights from analysis of trends in final energy consumption by sectors of the national economies, branches of the manufacturing sector, and by energy carriers. Long-term relationships between economic growth and final energy consumption are established. An econometric model was applied to predict final energy demand in the Baltic States for the 2020 horizon. It is emphasized that growing activities in the manufacturing and transport sectors will cause increase of final energy demand in all three countries. Based on detailed analysis of greenhouse gas (GHG) emissions trends some positive shifts are shown and the necessity of new policies in the transport sector and agriculture is identified. Changes of emission intensity indicators are examined and a potential for decoupling of carbon dioxide (CO2) emissions from economic growth in Estonia is indicated.


2021 ◽  
pp. 0958305X2110148
Author(s):  
George A Xydis ◽  
Katerina Kremastioti ◽  
Maria Panagiotidou

The present study discusses alternative ways of achieving optimum energy efficiency for historic buildings in areas where sustainable energy projects are planned. About 25% of Europe’s building stock was constructed before the mid-20th century and despite EU’s strenuous efforts for the protection and conservation of historic buildings and complexes, achieving energy efficiency with the minimum or preferably no intervention remains as a requirement. The settlement of Monemvasia, has been selected as our case study. A model building was chosen, its special characteristics are presented, and four solutions to the energy efficiency upgrade of the building were tested: (a) the application of internal insulation, (b) a heat pump installation, (c) the application of roof insulation, and (d) the replacement of the internal doorframes. The four scenarios were simulated via the TEE-KENAK software and the percentage of the annual energy saved through the application of each one of the mentioned measures was estimated. The results proved that installing a heat pump and internal insulation would maximise energy savings. Coupling the energy demand of the settlement in correlation with a wind energy project in the wider area, and the available curtailment was explored. The results showed that if 300 houses decide on acquiring their electricity consumption from the local wind independent power producer, at a price of EUR 35/MWh, the possible profit from the market could reach EUR100,000 per year. Such a business-driven concept could be extrapolated and evolve into a holistic wind energy and historic environment symbiosis setting.


2022 ◽  
Vol 72 ◽  
pp. 102448
Author(s):  
Kate Scott ◽  
Christopher J. Smith ◽  
Jason A. Lowe ◽  
Luis Garcia Carreras

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6470
Author(s):  
Walery Jezierski ◽  
Mirosław Zukowski ◽  
Beata Sadowska

This work presents the results of analysis of the final energy demand (Qk) for a single-family house in a pandemic situation and accompanying self-isolation of residents. It was assumed that the object of study is located in Bialystok (Poland). This analysis covers the impact of various factors such as specific periods of the active pandemic phase, the length of the inhabitants’ self-isolation period, the number of residents at home, and the type of energy source used in the building. Based on the results of computational experiments, a deterministic mathematical model of the relationship between these variables was developed, and the effects of the selected factors on the final energy demand were analyzed for the typical meteorological year (TMY) weather data. It turned out that the change in the length of the self-isolation period from 0 to 31 days caused an increase of Qk by about 6.5% for the analyzed building. When the number of inhabitants changed from 1 to 4, Qk increased by 34.7%. A change from 4 to 7 people causes an additional 26.7% increase in Qk. It was found that the structure of energy demand for this building operation during the period of inhabitants’ self-isolation also changed. With the increase in the length of the self-isolation period from 0 to 31 days, the electricity demand (Eel) increases by about 40–42%, while the demand for energy related to fuel consumption (Qg) decreases by about 7–10%. The article also presents an analysis of the impact of residents’ self-isolation on indoor air quality (IAQ) and thermal comfort. The simulation results showed that the use of variable air volume ventilation allows the CO2 concentration to be kept significantly below the limit value.


Author(s):  
Lakshman Ravi Teja Pedamallu ◽  
Vivek Kumar Singh ◽  
Alvaro Peixoto Filipe Gomes

Achieving energy efficiency in buildings is an important factor in developed and as well in developing countries in order to meet its energy demand. Over the past few years, a number of reports have been emerged stating that the buildings sectors are responsible for approximately 31% of global final energy demand. Buildings account for 35% of total final energy consumption in India and building energy consumption is growing about 8% per years. Final energy demand in Indian building sector will grow up-to five times by the end of this century, driven by rapid income and population growth. Hospitals are institutions for the care of people with health problems and are usually functional 24hrs a day, all year around, which demands a lot of energy. Health sector is one of the largest and fastest growing sectors in India. By 2020, it is expected to become a $ 280 billion industry. In India hospitals contribute 23% of total energy consumption and the hospital building growth rate 12–15% in last decade. The World Health Organization estimated that India need 80,000 additional hospital beds every year to meet the demands of India’s population. The aim of this study is to assess the energy demand, energy savings & reduced greenhouse gas emissions by increasing the energy efficiency using advanced retrofitting. Bottom-Up Energy Analysis System (BUENAS) is an end use energy demand projection model for Hospital buildings in India, to normalize the assessment of energy-saving models also going to fill the gap in energy demand reduction by energy system modeling and decomposition analysis. Energy efficiency retrofitting of existing buildings plays a major role in developing country like India in order improve its energy security and minimizing the greenhouse gases. The positive effects of retrofitting of energy efficiency and need the policies and target base proposal for government intention to achieve the potential for energy efficiency are discussed.


Sign in / Sign up

Export Citation Format

Share Document