scholarly journals Heat exchange processes in automotive internal combustion engines

2021 ◽  
Vol 2061 (1) ◽  
pp. 012061
Author(s):  
I N Ushnitsky

Abstract Combustion chamber diameters, an advance angle of fuel injection, injection rate, minimum ratio of air excess, methods of forcing, and oil cooling affect the heat exchange processes of engines. The method of thermal calculation of the working cycle makes it possible to consider the change in the physical properties of the working fluid, the effect of heat transfer between the working fluid, and the environment during the implementation of the working cycle. The main parameters of the gas at characteristic points of the indicator diagram are determined as a result of performing a thermal calculation, which makes it possible to assess the cycle perfection degree. Some of the main parameters of the working fluid (pressure, temperature) and the nature of their change can serve as input data when calculating engine parts for strength. The amount of mechanical work obtained in the cycle and the value of gas volume at the expansion process end demonstrates not only efficiency, but also the dimensions and weight of the engine, namely, indicators that affect the overall layout of machines.

Fire Safety ◽  
2018 ◽  
pp. 15-34
Author(s):  
P. Hashchuk ◽  
S. Nikipchuk

The general principles of model reflection of working processes in the internal combustion engine are investigated. Like that intramolecular (chemically effective), molecular (thermodynamically active) or macroscopic (ordered by external manifestation) motion in substances causes mass transfer - diffusion, impulse transfer - viscosity, as well as they form the transfer of energy of disordered motion - heat-exchanging. By tying the phenomena of mass, momentum and energy transfer with molecular, intraocular and ordered motions, respectively, the leading, radial and convection components of each of these phenomena can be distinguished. Due to the common condition, diffusion, viscosity, heat transfer are interconnected phenomena and play a decisive role in processes passing through cylinders of the internal combustion engine. Therefore, they together should have been subject to some general harmonious theory of motion and energy exchange, which is based on the uniform physical and mathematical principles of environmental reflection. However, today such a theory does not exist. Because of this, in the study of heat exchange processes in the internal combustion engines we have to move, relying heavily on the principles of empiricism. In spite of the extremely complex phenomenon of  heat transfer, the internal combustion engine in the working space of the engine is such that it allows us to rely on relatively simple model descriptions based on the principles of empiricism. The purpose of the work — based on the principles of the theory of similarity, to justify the possibility of adequate reflection and formalized generalization of experimentally identified information about the laws of the flow of heat transfer processes in the engines of Otto (the engine of rapid internal combustion). The main object of empirical research is the coefficient of heat transfer. Only meaningful transparency and ease of use can be explained by the fact that so far this concept is widely used, although it is completely motivated can be replaced by a more general dimensionless characteristic. A great deal of empirical dependencies are proposed for calculating this coefficient. Each of them has own level of universality and it is applicability limits for adequacy. Generally, universality and adequacy are not mutually conductive characteristics of the quality of empirical relationships. That is why studying a certain set of engine operating modes, it is desirable to involve in the mathematical and experimental apparatus of research, such analytically displayed empirical relationships, which within this set remained unchanged by the structure and values of its main parameters. Heat transfer in the cylinder of the engine of rapid internal combustion between the gas and the wall of the combustion space occurs mainly due to forced convection. Actually in the engine operating on the Otto cycle, the heat transfer as a result of radiation in the course of fueling is generally negligible because (unlike a diesel engine), in the projectile of combustion, there is not a significant amount of fired particles of soot, and by themselves, gases as emitters, as compared to forced turbulent convection, can tolerate a relatively small amount of heat, which is unlikely to be taken into consideration in general. Equation of forced convection is traditionally based on a similarity relationship between criteria Nusselt (Nu), Reynolds (Re), Prandtl (Pr); C, n, m, — constant. G.Woschni found out that the values of the degrees of power are acceptable  and .But in general it turned out that good simulation results can be obtained on the basis of experimental information on the flow of pressure and average temperature in the engine cylinder, taking  and for each mode of operation of the engine its meaning  from the range .Examples of model reproduction of the change in the coefficient of heat output from the angle of rotation of the motor shaft for different loads are given.


2017 ◽  
Author(s):  
Martia Shahsavan ◽  
John Hunter Mack

The thermodynamic efficiency of internal combustion engines is dependent on the compression ratio and specific heat ratio of the working fluid. Using a mixture of oxygen and noble gases instead of air can increase the thermal efficiency due to their higher specific heat ratio. It also has advantage of eliminating NOx caused by lack of nitrogen. In this study, the three dimensional turbulent injection of hydrogen into a constant volume combustion chamber has been modeled and compared to mixtures of oxygen with nitrogen, argon and xenon. All conditions including the mass flow rate of the injected fuel, injection velocity, and initial temperature and pressure of the chamber were kept constant. The results indicate that the hydrogen jet has more penetration length in nitrogen compared to argon and xenon. However, the smaller penetration lengths lead to more complex jet shapes and larger cone angles. In combination with the higher specific heat ratio, combustion in a noble gas environment results in higher temperatures and OH radical concentrations. Furthermore, mixedness is investigated using mean spatial variation and mean scalar dissipation. Hydrogen in argon shows a better mixing rate compared to nitrogen and xenon due to higher diffusivity.


Author(s):  
A.F. Khasanova ◽  
◽  
M.A. Gallyamov ◽  
Z.A. Zakirova ◽  
◽  
...  

2021 ◽  
pp. 146808742098626
Author(s):  
Pooyan Kheirkhah ◽  
Patrick Kirchen ◽  
Steven Rogak

Exhaust-stream particulate matter (PM) emission from combustion sources such as internal combustion engines are typically characterized with modest temporal resolutions; however, in-cylinder investigations have demonstrated significant variability and the importance of individual cycles in transient PM emissions. Here, using a Fast Exhaust Nephelometer (FEN), a methodology is developed for measuring the cycle-specific PM concentration at the exhaust port of a single-cylinder research engine. The measured FEN light-scattering is converted to cycle-resolved soot mass concentration ([Formula: see text]), and used to characterize the variability of engine-out soot emission. To validate this method, exhaust-port FEN measurements are compared with diluted gravimetric PM mass and scanning mobility particle sizer (SMPS) measurements, resulting in close agreements with an overall root-mean-square deviation of better than 30%. It is noted that when PM is sampled downstream in the exhaust system, the particles are larger by 50–70 nm due to coagulation. The response time of the FEN was characterized using a “skip-firing” scheme, by enabling and disabling the fuel injection during otherwise steady-state operation. The average response time due to sample transfer and mixing times is 55 ms, well below the engine cycle period (100 ms) for the considered engine speeds, thus suitable for single-cycle measurements carried out in this work. Utilizing the fast-response capability of the FEN, it is observed that cycle-specific gross indicated mean effective pressure (GIMEP) and [Formula: see text] are negatively correlated ([Formula: see text]: 0.2–0.7), implying that cycles with lower GIMEP emit more soot. The physical causes of this association deserve further investigation, but are expected to be caused by local fuel-air mixing effects. The averaged exhaust-port [Formula: see text] is similar to the diluted gravimetric measurements, but the cycle-to-cycle variations can only be detected with the FEN. The methodology developed here will be used in future investigations to characterize PM emissions during transient engine operation, and to enable exhaust-stream PM measurements for optical engine experiments.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2918
Author(s):  
Liang Zhang ◽  
Songhe Geng ◽  
Jun Kang ◽  
Jiahao Chao ◽  
Linchao Yang ◽  
...  

Self-circulation wellbore is a new technique for geothermal development in hot dry rocks (HDR), which uses a U-shape channel composed of tubing and casing as the heat exchanger. In this study, a self-circulation wellbore in HDR on a laboratory scale was built, and a serial of experiments were conducted to investigate the heat exchange law and the influencing factors on the heat mining rate of the wellbore. A similarity analysis was also made to estimate the heat-mining capacity of the wellbore on a field scale. The experimental results show that the large thermal conductivity and heat capacity of granite with high temperature can contribute to a large heat-mining rate. A high injection rate can cause a high convective heat transfer coefficient in wellbore, while a balance is needed between the heat mining rate and the outlet temperature. An inner tubing with low thermal conductivity can significantly reduce the heat loss to the casing annulus. The similarity analysis indicates that a heat mining rate of 1.25 MW can be reached when using a 2000 m long horizontal well section in a 150 °C HDR reservoir with a circulation rate of 602.8 m3/day. This result is well corresponding to the published data.


2014 ◽  
Vol 21 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Edmundas Monstvilas ◽  
Karolis Banionis ◽  
Jurga Poderytė ◽  
Raimondas Bliūdžius ◽  
Arūnas Burlingis

The article presents the solution of heat balance equation system, describing heat exchange processes in ventilated envelopes, which was applied to derive formulas for the calculation of temperatures in the ventilated layers of the envelopes. The accurateness of the formulas was assessed by experimental research and analysis of the calculation results. During the process of heat exchange balance equation solution, the equations were simplified by introducing the following restriction into the derived formulas: they may only be applied for the ventilated envelopes with steel or similar coatings as their external layers, i.e. coatings having small heat capacity and minor difference between the external and internal surface temperatures. The derived formulas enable the calculation of the temperatures of the ventilated envelopes in the distance which does not exceed a half of the ventilated air gap length measuring from the air entrance into the gap. However, this restriction does not impede the estimation of the average thermal indicators of the ventilated envelopes.


Author(s):  
Tianyu Jin ◽  
Yu Sun ◽  
Chuqiao Wang ◽  
Adams Moro ◽  
Xiwen Wu ◽  
...  

Abstract The stringent emission regulations diesel engines are required to meet has resulted in the usage of multi-hole and ultra-multi-hole injectors, nowadays. In this research study, a double layered 8-hole diesel injection nozzle was investigated both numerically and experimentally. A three-dimensional model of the nozzle which was validated with experimental results was used to analyze the injection characteristics of each hole. The validation was conducted by comparing experiment and simulation injection rate results, acquired simultaneously from all the holes of the injector and the model. The fuel flow rates of the lower layered holes are higher than those of the upper layered holes. Two different needle eccentricity models were established. The first model only included the lateral displacement of the needle during needle lift. The needle reached maximum displacement at full needle lift. The second model considered the needle inelastic deformation into consideration. The needle radially displaces and glides along with the needle seat surface during needle lift. When the eccentricity reached maximum in the radial direction, the needle began to lift upwards vertically. The differences in injection characteristics under the different eccentricity models were apparent. The results indicated that the cycle injection quantity, fuel injection rate and cavitation of each hole were affected during the initial lifting stages of the needle lift. As the eccentricity of the needle increases, the injection rate uniformity from the nozzle hole deteriorates. The result showed that the upper layered holes were affected by the needle eccentricity during needle lift.


2021 ◽  
Vol 2(50) ◽  
Author(s):  
Sergey Korobka ◽  
◽  
Sergey Syrotyuk ◽  
Dmitry Zhuravel ◽  
Boris Boltianskyi ◽  
...  

The work is devoted to the issue of the rational use of the solar energy in the technological process of fruit drying based on the use of solar drying devices, which are applied in various sections of the agro-industrial centers of Ukraine. The aim of this research was intensification of the fruits drying process using the solar energy by combining an air collector and drying chamber into a single power unit. To achieve the aim the heat exchange diagnostic techniques with alternative potentials of diffusion and moisture transfer was developed. This technique differs from those existing for the heat exchange research in that it allows the intensity of the moisture evaporation from a unit of the material surface to be calculated, based on the synthesis of the moisture content and the irreversible major laws of processes of the heat exchange characteristics of the fruits drying using the solar dryer. The above model makes it possible to diagnose the heat exchange processes and analyze the mathematical model of the heat exchange processes. It also allows modeling the changeable diffusion and moisture transfer potentials based on the dependences obtained and for the purpose of a further application in the methods and devices development to control the strain-deformed state of the fruits during the drying process. The method is offered for the calculation of diffusion and moisture transfer during drying fruits in the solar dryer.


Sign in / Sign up

Export Citation Format

Share Document