scholarly journals Thermal performance of a novel lightweight emergency construction system in different climates

2021 ◽  
Vol 2069 (1) ◽  
pp. 012066
Author(s):  
Marco D’Orazio ◽  
Gianluca Maracchini

Abstract Prefabricated, lightweight construction systems, thanks to their quicker construction processes, cheapness, higher portability, and adaptability, are increasingly proposed all around the world as emergency architectures (after natural disasters, pandemics, etc.), and as affordable housing solutions in countries with increasing housing demand. Due to their low thermal inertia, however, these buildings are often characterized by poor thermal performance in hot climates due to indoor overheating. The possible application of passive cooling measures is often investigated to improve their thermal performance. Among others, cool materials present some advantages in terms of ease of application and costs. However, few studies investigated the impact of this passive strategy on the thermal performance of emergency buildings. For this reason, this work evaluates the impact of cooling materials on the thermal performance of a novel lightweight prefabricated construction system (HOMEDONE) based on the assembly of reinforced-EPS panels. First, a numerical model of an experimental mock-up was created and calibrated on experimental data. Then, the thermal performance of a typical temporary housing solution was numerically evaluated under different climatic locations. Finally, the effectiveness of cooling finishing materials is investigated. The potential of cooling materials in reducing the energy demand for the studied construction system is then highlighted.

2021 ◽  
Vol 13 (6) ◽  
pp. 3380
Author(s):  
Marta Gangolells ◽  
Miquel Casals ◽  
Marcel Macarulla ◽  
Núria Forcada

This paper analyzes the impact of an innovative approach based on gamification to promote reduced energy consumption in social housing. The game was developed and validated under the auspices of the EU-funded project EnerGAware-Energy Game for Awareness of energy efficiency in social housing communities in an affordable housing pilot located in Plymouth (United Kingdom). The results showed that the future exploitation of the game holds important energy- and emissions-saving potential. Assuming that the game is distributed freely by European energy providers to their domestic end-users, the game was found to be able to save more than 48.9 secondary terawatt-hours per year (TWhs) and 18.8 million tons of CO2e annually, contributing up to around 8% to the target set for the European buildings sector to keep global warming under 2 °C. The results also showed that the game is highly feasible from the energy point of view, even when we consider the energy consumed upstream, due to its low cumulative energy demand and its potential for household energy reduction. The results of this research provide helpful information for private and public stakeholders, as they contribute to determining the sustainability of promoting energy saving through gaming.


2013 ◽  
Vol 368-370 ◽  
pp. 562-565
Author(s):  
Min Xiao ◽  
Guo Qiang Zhang

The evaluation method of residential building envelope thermal performance in hot-summer and cold-winter area is different from the method of the cold northern regions, that is, the merit of the thermal performance of walls and roofs should not be determined only by the heat transfer coefficient K or thermal resistance R, the impact of the thermal inertia index on the thermal performance of building envelope should also be considered. The analysis results show that, with the different values of thermal inertia index D, the difference of residential summer air-conditioning power consumption is not big, but the difference of residential winter heating power consumption is bigger, therefore, the high thermal inert wall is more conductive to reduce the winter heating power consumption than the low thermal inert wall.


2019 ◽  
Vol 887 ◽  
pp. 189-195
Author(s):  
Araz Azarnejhad ◽  
Ardeshir Mahdavi

A surface property of building façades, which has implications for thermal performance of buildings as well as outdoor thermal comfort, is visual reflectance. In this paper, the effects of façades’ visual reflectance on buildings' thermal performance and outdoor thermal comfort were investigated. A simulation tool was calibrated via empirical data and deployed to explore the impact of the visual reflectance of typical building façades in Vienna on indoor temperature and heating and cooling loads. The results show that the magnitude of visual reflectance has little impact on indoor temperature and energy demand of insulated buildings, while its effect on cooling load of non-insulated buildings is considerable. Finally, the effect of façades' visual reflectance on outdoor thermal comfort was investigated.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012080
Author(s):  
Mohammad Rahiminejad ◽  
Cécile Berquand ◽  
Dolaana Khovalyg

Abstract The building envelope acts as a shield against varying weather conditions and modulates thermal energy flow between outdoors and indoors. The choice of layers used in the assembly impacts the heat loss and gain through the wall structure and potentially can affect the comfort indoors. Thus, the building envelope plays an essential role in the thermal performance of the building. Optimizing the cladding design in the envelope has recently become increasingly important to reach sustainable development strategies for reducing greenhouse gas emissions by 2050. This paper aims to analyze several cladding types used on the EPFL campus in Lausanne and compare their impact on the energy performance of the building envelopes. The building assemblies constructed on the EPFL campus in different years vary in composition and thermo-physical properties of the layers used. The impact of these parameters on the thermal performance of the wall assembly is evaluated by comparing the variation of heat flux and temperature fluctuations within the wall structure. The results obtained highlight the importance of the building envelope layers and materials used in the wall structure. Due to the variations in the thermal inertia of different wall assemblies, a time shift of more than 3 hours in the transient response of the building envelope to the fluctuation of the outdoor weather conditions is observed.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2018 ◽  
Author(s):  
Xiaoqing Chen ◽  
Hailong Li ◽  
Xueqiang Li ◽  
Yabo Wang ◽  
Kai Zhu

2019 ◽  
Vol 943 (1) ◽  
pp. 68-75
Author(s):  
S.G. Pugacheva ◽  
E.A. Feoktistova ◽  
V.V. Shevchenko

The article presents the results of astrophysical studies of the Moon’s reflected and intrinsic radiation. We studied the intensity of the Moon’s infrared radiation and, thus, carried out a detailed research of the brightness temperature of the Moon’s visible disc, estimated the thermal inertia of the coating substance by the rate of its surface cooling, and the degree of the lunar soil fragmentation. Polarimetric, colorimetric and spectrophotometric measurements of the reflected radiation intensity were carried out at different wavelengths. In the article, we present maps prepared based on our measurement results. We conducted theresearch of the unique South Pole – Aitken basin (SPA). The altitude profiles of the Apollo-11 and Zond-8 spacecrafts and the data of laser altimeters of the Apollo-16 and Apollo-15 spacecrafts were used as the main material. Basing upon this data we prepared a hypsometric map of SPA-basing global relief structure. A surface topography map of the Moon’s Southern Hemisphere is given in the article. The topography model of the SPA topography surface shows displacement centers of the altitude topographic rims from the central rim. Basing upon the detailed study of the basin’s topography as well as its “depth-diameter” ratio we suggest that the basin originated from the impact of a giant cometary body from the Orta Cloud. In our works, we consider the Moon as a part of the Earth’s space infrastructure. High growth rates of the Earth’s population, irrational nature management will cause deterioration of scarce natural resources in the near future. In our article, we present maps of the natural resources on the Moon pointing out the most promising regions of thorium, iron, and titanium. Probably in 20 or 40 years a critical mining level of gold, diamonds, zinc, platinum and other vital rocks and metals will be missing on the Earth.


Author(s):  
Bertrand Maître

Ireland’s exceptionally deep economic and fiscal crisis had an immediate and profound impact on employment and household incomes. The percentage of children below a 2008 relative income threshold increased in line with prices, rose from 18 per cent to 28 per cent, and by 2012 32 per cent of children were in households reporting severe material deprivation. The impact of the recession was significantly buffered by the social security system providing an income floor for those who lost their jobs, despite cuts in some social transfers, and the redistributive impact of the tax and transfer system increased markedly. Overall the Irish welfare state proved reasonably robust in responding to the crisis, bringing about rapid fiscal adjustment, although public expenditure cuts on key services, high levels of debt, failure to generate adequate affordable housing, and the scarring effects of unemployment mean it will have a lasting impact on families.


Sign in / Sign up

Export Citation Format

Share Document