scholarly journals Thermal and Electrical Performance of AlGaAs/GaAs based HEMT device on SiC substrate

2021 ◽  
Vol 2070 (1) ◽  
pp. 012057
Author(s):  
Preethi Elizabeth Iype ◽  
V Suresh Babu ◽  
Geenu Paul

Abstract In this paper investigation on electrical and thermal performance of the AlGaAs/GaAs HEMT device is carried out by comparing the device grown on substrates like 4H-SiC and Sapphire. The investigation was carried out based on Silvaco TCAD Atlas simulation. The DC characteristics of the device with varying ambient temperature were evaluated. A deterioration of drain current from 0.9 mA to 0.5 mA is observed as temperature rises from 300K to 500K on 4H-SiC substrate. The HEMT grown on 4H-SiC substrate has a high power dissipation, resulting in reduced temperature compared to sapphire substrate. This increases the lifetime of the device by 1000s of hours and also its overall performance. The HEMT proposed here is found to have an electrically and thermally optimal performance on 4H-SiC substrate than on sapphire

2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Arthur James Swart

MOSFET devices have developed significantly over the past few years to become the number one choice for high-power applications in power electronics and electronic communication. Commercially available devices (such as the IXYS RF manufactured) now operate into the VHF range with output RF powers of up to 300 W. They are optimized for linear operation and suitable for broadcast and communication applications. This paper presents the heat transfer out of an IXZ210N50L MOSFET which is sandwiched between two identical heatsinks. The results reveal a linear decrease in heat flowing away from the top of the MOSFET when compared to the bottom of the MOSFET for each step increase of drain current. Two graphs (representing the top and bottom heatsinks connected to the MOSFET device) contrast the temperature rise for the Bisink technique when the drain current through the IXZ210N50L MOSFET is kept constant at 5 A. The Bisink technique has the advantages of lower on-state resistances and higher output powers when compared to the traditional mounting using only one heatsink, resulting in improved reliability and performance. Results further reveal that the ambient temperature must be measured in the vicinity of the heatsink.


2003 ◽  
Vol 771 ◽  
Author(s):  
Michael C. Hamilton ◽  
Sandrine Martin ◽  
Jerzy Kanicki

AbstractWe have investigated the effects of white-light illumination on the electrical performance of organic polymer thin-film transistors (OP-TFTs). The OFF-state drain current is significantly increased, while the drain current in the strong accumulation regime is relatively unaffected. At the same time, the threshold voltage is decreased and the subthreshold slope is increased, while the field-effect mobility of the charge carriers is not affected. The observed effects are explained in terms of the photogeneration of free charge carriers in the channel region due to the absorbed photons.


2019 ◽  
Vol 45 (5) ◽  
pp. 6356-6362 ◽  
Author(s):  
Qing Yao ◽  
Le Zhang ◽  
Jing Zhang ◽  
Zhigang Jiang ◽  
Bingheng Sun ◽  
...  

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 573 ◽  
Author(s):  
Hujun Jia ◽  
Mei Hu ◽  
Shunwei Zhu

An improved ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (IUU-MESFET) is proposed in this paper. The structure is obtained by modifying the ultrahigh upper gate height h of the ultrahigh upper gate 4H-SiC metal semiconductor field effect transistor (UU-MESFET) structure, and the h is 0.1 μm and 0.2 μm for the IUU-MESFET and UU-MESFET, respectively. Compared with the UU-MESFET, the IUU-MESFET structure has a greater threshold voltage and trans-conductance, and smaller breakdown voltage and saturation drain current, and when the ultrahigh upper gate height h is 0.1 μm, the relationship between these parameters is balanced, so as to solve the contradictory relationship that these parameters cannot be improved simultaneously. Therefore, the power added efficiency (PAE) of the IUU-MESFET structure is increased from 60.16% to 70.99% compared with the UU-MESFET, and advanced by 18%.


Author(s):  
Sangmesh ◽  
◽  
Gopalakrishna Keshava Narayana ◽  
Manjunath Shiraganhalli Honnaiah ◽  
Krishna Venkatesh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document