scholarly journals Moisture trajectories during heavy rainfall events using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model

2021 ◽  
Vol 2070 (1) ◽  
pp. 012066
Author(s):  
S Aryalakshmi ◽  
Dhanya Madhu

Abstract Heavy rainfall inducing other catastrophic events are frequently experienced globally. Understanding the mechanisms of moisture transport during such events will help in furthering our knowledge about such systems. In the current study, estimation of most likely moisture trajectoriesis performed using back trajectory analyses. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model available from National Oceanic and Atmospheric Administration’s (NOAA) Air Resources Laboratory (ARL) is used for the purpose. A preliminary analysis is conducted by calculating the frequencies of back trajectories from two locations in Kerala for three heavy rainfall cases. The analysis indicates that both the locations have similar pattern of moisture trajectories during the cases occurring in south west monsoon and pre monsoon periods. However, a change in the behaviour of the trajectories for the two locations is observed for the case during the north east monsoon period. Since this study involved only individual cases, robust conclusions cannot be made based on this for the dynamics of moisture transport for these locations. More detailed analysis will follow this preliminary study in future for the purpose.

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 388
Author(s):  
Andrea Bazzano ◽  
Stefano Bertinetti ◽  
Francisco Ardini ◽  
David Cappelletti ◽  
Marco Grotti

Lead content, enrichment factors, and isotopic composition (208Pb/206Pb and 207Pb/206Pb) measured in atmospheric particulate matter (PM10) samples collected for nine years at Ny-Ålesund (Svalbard islands, Norwegian Arctic) during spring and summer are presented and discussed. The possible source areas (PSA) for particulate inferred from Pb isotope ratio values were compared to cluster analysis of back-trajectories. Results show that anthropogenic Pb dominates over natural crustal Pb, with a recurring higher influence in spring, compared to summer. Crustal Pb accounted for 5–16% of the measured Pb concentration. Anthropogenic Pb was affected by (i) a Central Asian PSA with Pb isotope signature compatible with ores smelted in the Rudny Altai region, at the Russian and Kazakhstan border, which accounted for 85% of the anthropogenic Pb concentration, and (ii) a weaker North American PSA, contributing for the remaining 15%. Central Asian PSA exerted an influence on 71–86% of spring samples, without any significant interannual variation. On the contrary, 59–87% of summer samples were influenced by the North American PSA, with higher contributions during 2015 and 2018. Back-trajectory analysis agreed on the seasonal difference in PSA and highlighted a possible increased influence for North American air masses during summer 2010 and 2018, but not for summer 2015.


Seismologists have often noted the appearance of pronounced microseisms in seismic records when the weather has been disturbed over a neighbouring sea. For instance, the late Dr. KLOTZ suggested a relationship between disturbed weather in the north Atlantic and the largest microseismic movements at Ottawa. Dr. HARRISON, writing in ' Nature,’ November 1, 1924, in continuation of a note* by the present writer, pointed out that well-marked microseisms in the Omori charts at Calcutta invariably confirmed other evidence in the case of the early stages of dangerous cyclones, and were sometimes noticed when the storm centre was so much as 1000 miles south of Calcutta. He did not, however, recall any instance in which microseisms were associated with ordinary rough weather or with an advance of the monsoon. On the other hand, “ investigation at Eskdalemuir of the possible connection between microseismical amplitude and the state of the sea at different points of the British coasts have yielded results of an inconclusive kind. For example, the correlation between the state of the sea and the Microseismic movements of a type, which were quite characteristic of the south-west monsoon period, made their first appearance in the seismograms generally in May with the advance of the monsoon in the south-east Arabian Sea, becoming more and more pronounced as the monsoon currents approached Bombay. They became less marked or disappeared during a temporary break in the monsoon and reappeared with the strengthening of the currents. They were more or less steady vibrations having periods ranging from 4 to 10 seconds.


2020 ◽  
Vol 20 (1) ◽  
pp. 577-596 ◽  
Author(s):  
Camille Viatte ◽  
Tianze Wang ◽  
Martin Van Damme ◽  
Enrico Dammers ◽  
Frederik Meleux ◽  
...  

Abstract. The Paris megacity experiences frequent particulate matter (i.e.PM2.5, particulate matter with a diameter less than 2.5 µm) pollution episodes in spring (March–April). At this time of the year, large numbers of the particles consist of ammonium sulfate and nitrate which are formed from ammonia (NH3) released during fertilizer spreading practices and transported from the surrounding areas to Paris. There is still limited knowledge of the emission sources around Paris, their magnitude, and their seasonality. Using space-borne NH3 observation records of 10 years (2008–2017) and 5 years (2013–2017) provided by the Infrared Atmospheric Sounding Interferometer (IASI) and the Cross-Track Infrared Sounder (CrIS) instrument, regional patterns of NH3 variabilities (seasonal and interannual) are derived. Observations reveal identical high seasonal variability with three major NH3 hotspots found from March to August. The high interannual variability is discussed with respect to atmospheric total precipitation and temperature. A detailed analysis of the seasonal cycle is performed using both IASI and CrIS instrument data, together with outputs from the CHIMERE atmospheric model. For 2014 and 2015, the CHIMERE model shows coefficients of determination of 0.58 and 0.18 when compared to IASI and CrIS, respectively. With respect to spatial variability, the CHIMERE monthly NH3 concentrations in spring show a slight underrepresentation over Belgium and the United Kingdom and an overrepresentation in agricultural areas in the French Brittany–Pays de la Loire and Plateau du Jura region, as well as in northern Switzerland. In addition, PM2.5 concentrations derived from the CHIMERE model have been evaluated against surface measurements from the Airparif network over Paris, with which agreement was found (r2 = 0.56) with however an underestimation during spring pollution events. Using HYSPLIT cluster analysis of back trajectories, we show that NH3 total columns measured in spring over Paris are enhanced when air masses originate from the north-east (e.g. the Netherlands and Belgium), highlighting the importance of long-range transport in the NH3 budget over Paris. Variability in NH3 in the north-east region is likely to impact NH3 concentrations in the Parisian region since the cross-correlation function is above 0.3 (at lag = 0 and 1 d). Finally, we quantify the key meteorological parameters driving the specific conditions important for the formation of PM2.5 from NH3 in the Île-de-France region in spring. Data-driven results based on surface PM2.5 measurements from the Airparif network and IASI NH3 measurements show that a combination of the factors such as a low boundary layer of ∼500 m, a relatively low temperature of 5 ∘C, a high relative humidity of 70 %, and wind from the north-east contributes to a positive PM2.5 and NH3 correlation.


ENTOMON ◽  
2021 ◽  
Vol 46 (2) ◽  
pp. 149-166
Author(s):  
Lincy Abraham ◽  
S. Shanas

The foraging hive activity of stingless bee Tetragonula travancorica Shanas and Faseeh was studied from November 2018 to August 2019. The activity varied between the seasons, weather conditions and time hours of study. The outgoing and incoming pollen foragers exhibited two peaks in activity, from 0800-1200 h (first) and during 1500-1600 h (second). The activity of incoming non-pollen foragers displayed only one distinct peak between 1000-1200 h except during the southwest monsoon period. The greatest activity was recorded during the dry season (January-May), followed by the south-west monsoon (June-August) and north-east monsoon (November- December) seasons. Maximum overall activity was recorded during hotter months February, March and April while the lowest was observed in January and December. At any season or time, the number of incoming foragers without pollen was greater than pollen foragers.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Ana Galveias ◽  
Ana R. Costa ◽  
Daniele Bortoli ◽  
Russell Alpizar-Jara ◽  
Rui Salgado ◽  
...  

Research Highlights: Daily airborne Cupressaceae pollen disruption ranged from 20 to 90%; relative humidity (RH), rainfall and atmospheric pressure (AtP) were the major meteorological determinants of this phenomenon. Background and Objectives: Cupressaceae family includes several species that are widely used as ornamental plants pollinating in late winter-early spring and might be responsible for allergic outbreaks. Cupressaceae pollen disruption may favour allergen dissemination, potentiating its allergenicity. The aim of this work was to characterize the Cupressaceae pollen aerobiology in Évora, South of Portugal, in 2017 and 2018, particularly the pollen disruption, and to identify the meteorological parameters contributing to this phenomenon. Materials and Methods: Pollen was collected using a Hirst type 7-day pollen trap and was identified following the standard methodology. Temperature, RH, rainfall, global solar radiation (Global Srad), AtP, wind speed and direction were obtained from a weather station installed side-by-side to the Hirst platform. Back trajectories (12-h) of air masses arriving at Évora were calculated using the HYSPLIT model. Results: Cupressaceae pollen index was higher in 2017 compared to 2018 (>5994 and 3175 pollen/m3, respectively) and 36 ± 19% (2017) and 59 ± 23% (2018) of the pollen was disrupted. Higher levels of disrupted pollen coincided with RH > 60% and rainfall. Temperature, Global Srad and AtP correlated negatively with pollen disruption. Wind speed and wind direction did not significantly correlate with pollen disruption. Intra-diurnal pollen pattern peaked between 9:00 am–2:00 pm, suggesting local origin, confirmed by the back trajectory analysis. Intra-diurnal pollen disruption profile followed hourly pollen pattern and it negatively correlated with AtP, temperature and Global Srad but was uncorrelated with RH. Conclusions: The results suggest that RH, rainfall and AtP are the main factors affecting airborne Cupressaceae pollen integrity and in conjunction with daily pollen concentration may be used to predict the risk of allergy outbreaks to this pollen type.


2020 ◽  
Vol 8 (4) ◽  
pp. 43-47
Author(s):  
M Marimuthu

The Thamirabarani River is one of the prominent sources of water for Kadamba Tank. Thamirabarani river is the perennial river in the South Tamil Nadu. Apart from that, which can store water during the North-East Monsoon period. The water user association members are getting money from duck rears and allowing duck into the agriculture fields after the harvest. The agriculturist is saying that after the first harvest if the water is not sufficient for the next crop such as paddy, farmers can go for the crop such as zero water consumption crops like green gram, black gram. Because of duck farming, agriculturists are not able to get benefited from low-cost crops. Indeed, water is the scarcity of resources in Tamil Nadu; irrigation water should not be charged more. Like other places in Tamil Nadu, in Kadamba Kulam agriculture basin, also collecting charges (ayakatu) for water usage by the association. The nonavailability of water throughout the year, the agricultural labors are moved from native and employed in the industrial sector. Tamil Nadu is a water tense state that lingers to experience water shortages which are expected to exacerbate in future due to the political pressure and money laundering, Justices A. Selvam and P. Kalaiyarasan dismissed the petitions on several grounds, including the State government’s submission that only 43 mc ft out of 5,049 mcf of surface water that goes waste into the sea was being supplied to the two industries. The court said that such supply did not affect either irrigation or drinking water needs of the people in any way.


2019 ◽  
Vol 8 (4) ◽  
pp. 9287-9290

Vrishabhavathi valley is a part of river Arkavathi. It covers parts of Bengaluru Urban and Ramanagara districts with an area of 381.46 sq. kms. Due to rapid urbanization in Bengaluru lot of pervious strata is converted into non-pervious concrete or asphalt surfaces. Rainfall is a major event, which is resulting flood in Bengaluru city. Recently observed heavy rainfall, rapid urbanization, encroachment of streams and water bodies are the major causes of flooding in Bengaluru. Disturbance to human activities and damages to properties has been observed in Vrishabhavathi valley region due to heavy rainfall especially in heavy rain events. Rainfall data analysis has been carried out statistically and graphically on Vrishabhavathi valley from 1970 to 2018. Rainfall analysis was made on converting daily rainfall data to monthly average data and seasonal analysis of rainfall has made for three different monsoon seasons Pre- monsoon, South- West and North- East monsoon, distribution and frequency of rainfall has been analyzed and results are represented graphically. From the annual rainfall study it is observed that less rainfall variations till 1990 and rainfall pattern seem to be increasing constantly from 1990’s onwards till 2018, particularly in the months of August, September and October. The rainfall contribution during south-west monsoon is almost equal to 50% of total annual rainfall. Rainfall analysis is essential to develop appropriate flood prediction models utilizing latest rainfall data collected (KSNDMC Telemetric station data) and available geospatial data to address the issues of urban flood observed in many locations in Vrishabhavathi valley region and in Bengaluru.


MAUSAM ◽  
2021 ◽  
Vol 61 (3) ◽  
pp. 317-336
Author(s):  
V. R. DURAI ◽  
S. K. ROY BHOWMIK ◽  
B. MUKHOPADHYAY

The study provides a concise and synthesized documentation of the current level of skill of the satellite (3B42RT, 3B42V-6, KALPANA-1) products over Indian regions based on the data gathered during the summer monsoon seasons of 2006, 2007 and 2008. The inter-comparison of satellite products with the rain gauge observations suggests that the TRMM 3B42V6 product could distinctly capture characteristic features of the summer monsoon, such as north–south oriented belt of heavy rainfall along the Western Ghats with sharp gradient of rainfall between the west coast heavy rain region and the rain shadow region to the east, pockets of heavy rainfall along the location of monsoon trough, over the east central parts of the country, over north-east India, along the foothills of Himalayas and over the north Bay of Bengal. The KALPANA-1 and 3B42RT products reproduce only the broadest features of mean monsoon seasonal rainfall. The near real-time products 3B42RT and KALPANA-1 underestimate the orographic heavy rainfall along the Western Ghats of India. The precipitation estimates from TRMM 3B42V6 product, when accumulated over the whole season, could reproduce the observed pattern. However, the TRMM 3B42RT and KALPANA-1 estimates are comparatively lower than the observed rainfall over most parts of the country during the season. Inter comparison reveals that the TRMM 3B42V6 product showed better skill in estimating the daily and seasonal mean rainfall over all India and also over four homogeneous regions of India.  


1976 ◽  
Vol 1 (15) ◽  
pp. 80
Author(s):  
P.C. Sarena ◽  
P.P. Vaidyaraman ◽  
R. Srinivasan

Siltation in harbours and their approach channels is one of the major problems connected with the development of harbours. The economics of harbours are directly related to their annual maintenance dredging, and as such a proper assessment of the quantity of siltation and provision of adequate measures for the maintenance of depths would form an important part of planning the development programmes. Siltation could occur due to various reasons viz. deposition of littoral drift which is interrupted by the approach channel, deposition of sediments brought into suspension by wave action (including during storm/cyclone) Whenever the alongshore drift is large, wave action obviously is quite substantial which renders the maintenance of depths during this period by dredging difficult. In such cases it would be necessary to make adequate provision to ensure that the depths are not deteriorated to any substantial extent by the movement of the drift. One of the common means for achieving this is the provision of sandtraps on the updrlft side of the approach channel which would 'store' the drift material temporarily and from where the material could be dredged at convenience. The design of the sandtrap would be governed by a number of factors such as the extent over which a major part of the drift takes place, quantity of material transported, size distribution of sediments, velocity of currents, mode of dredging etc. Waves of moderate to high intensity occurs along the eastern coast of India from south and south west direction during south west monsoon period from May to September and from North Easterly direction during North East monsoon beginning from November. In view of this climate the direction of drift along the shore changes with Mason. The quantities of drift during these periods are also different owing to the magnitudeand periods of wave action which differs between the two seasons. The net drift along this coast varies from 0»60 million m3 at Madras on the south which increases progressively to 1,00 million m3 at Paradip further North (Fig, 1),


MAUSAM ◽  
2021 ◽  
Vol 71 (3) ◽  
pp. 513-522
Author(s):  
Sharma R S ◽  
Mandal B K ◽  
Das G K

Floods are very common in eastern India during southwest monsoon season. It brings a lot of misery to the people of this region. Every year eastern Indian states namely West Bengal, Odisha and Bihar witness such types of flood during monsoon period. Major river basins in eastern India are Ganga river basin in Bihar and West Bengal area, Odisha has three river basins namely Mahanadi, Subarnarekha, Brahmani and Baitarani        [Fig. 1(a)]. As majority of tributary rivers of Ganga passing through Bihar and West Bengal; these two states are more prone to massive flood during monsoon season. The abnormal occurrence of rainfall generally causes floods. It occurs when surface runoff exceeds the capacity of natural drainage. The heavy rainfall is frequently occurring event over the area during South-West Monsoon (SWM) every year. The geographical location of the area, orography and its interaction with the basic monsoon flow is considered as one of prime factors of these heavy rainfall activities. Synoptically, the latitudinal oscillation of eastern end of the Monsoon Trough and the synoptic disturbances formed or passing over the eastern India region and / or its neighbourhood that brings moisture laden Easterly or South-Easterly winds over the area are the main causes responsible for heavy rainfall in this area.


Sign in / Sign up

Export Citation Format

Share Document