scholarly journals Research on Trench Etching and Photolithography Process of SiC Trench MOSFET

2021 ◽  
Vol 2083 (2) ◽  
pp. 022093
Author(s):  
Wanli Zhao ◽  
Huan Ge ◽  
Peifei Wu ◽  
Xue Bai ◽  
Xiaowei Wu ◽  
...  

Abstract In this paper, the development of trench etching process and photolithography process for 6-inch 4H-SiC trench-type power MOSFET devices is mainly studied. Among them, the etching process successfully solved the anisotropy of dry etching of SiC, the different etching rates of different crystal planes, the difficulty of controlling the angle of the trench sidewall, and the easy formation of micro-trenches at the corners, etc. Successfully realized trenches with etch depth greater than 1.2um and sidewall angle greater than 90° in SiC. Subsequently, the trench was filled with SiO2 to achieve no holes in the trench after filling, and then the photolithography process was studied. Photolithography process is resolved at the trench coating, exposing and developing the non-uniformity problem, achieve a full and uniform coating, self-aligned trench overlay and the overlay accuracy of less than 0.1um, and there is no residue of photoresist in the groove after development. This article uses scanning electron microscope (SEM) to measure the morphology of the trench after etching and photolithography to characterize the experimental results, and the results meet the process requirements. The successful development of this process will facilitate the research and development of deeper trench-type power MOSFET devices.

2015 ◽  
Vol 1109 ◽  
pp. 381-384
Author(s):  
M. Safwan Azmi ◽  
Sharipah Nadzirah ◽  
Uda Hashim

The purpose of this paper is to study the morphological characterization of aluminum interdigitated electrodes (IDE) of different gap sizes on silicon substrate. The electrodes were fabricated using standard photolithography process and were done so with sizes of 12 μm, 10 μm and 7 μm. The electrodes were morphologically characterized using scanning electron microscope (SEM) and high-powered microscope (HPM).Keywords: morphological, interdigitated electrodes, aluminum


2013 ◽  
Vol 13 (12) ◽  
pp. 8032-8035
Author(s):  
Sangheon Lee ◽  
Junhwan Lee ◽  
Sanghyun Ban ◽  
Hye-Keun Oh ◽  
Byungho Nam ◽  
...  

Author(s):  
D. E. Fornwalt ◽  
A. R. Geary ◽  
B. H. Kear

A systematic study has been made of the effects of various heat treatments on the microstructures of several experimental high volume fraction γ’ precipitation hardened nickel-base alloys, after doping with ∼2 w/o Hf so as to improve the stress rupture life and ductility. The most significant microstructural chan§e brought about by prolonged aging at temperatures in the range 1600°-1900°F was the decoration of grain boundaries with precipitate particles.Precipitation along the grain boundaries was first detected by optical microscopy, but it was necessary to use the scanning electron microscope to reveal the details of the precipitate morphology. Figure 1(a) shows the grain boundary precipitates in relief, after partial dissolution of the surrounding γ + γ’ matrix.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
J. D. Hutchison

When the transmission electron microscope was commercially introduced a few years ago, it was heralded as one of the most significant aids to medical research of the century. It continues to occupy that niche; however, the scanning electron microscope is gaining rapidly in relative importance as it fills the gap between conventional optical microscopy and transmission electron microscopy.IBM Boulder is conducting three major programs in cooperation with the Colorado School of Medicine. These are the study of the mechanism of failure of the prosthetic heart valve, the study of the ultrastructure of lung tissue, and the definition of the function of the cilia of the ventricular ependyma of the brain.


Author(s):  
T. Kanetaka ◽  
M. Cho ◽  
S. Kawamura ◽  
T. Sado ◽  
K. Hara

The authors have investigated the dissolution process of human cholesterol gallstones using a scanning electron microscope(SEM). This study was carried out by comparing control gallstones incubated in beagle bile with gallstones obtained from patients who were treated with chenodeoxycholic acid(CDCA).The cholesterol gallstones for this study were obtained from 14 patients. Three control patients were treated without CDCA and eleven patients were treated with CDCA 300-600 mg/day for periods ranging from four to twenty five months. It was confirmed through chemical analysis that these gallstones contained more than 80% cholesterol in both the outer surface and the core.The specimen were obtained from the outer surface and the core of the gallstones. Each specimen was attached to alminum sheet and coated with carbon to 100Å thickness. The SEM observation was made by Hitachi S-550 with 20 kV acceleration voltage and with 60-20, 000X magnification.


Sign in / Sign up

Export Citation Format

Share Document