scholarly journals Quantitative analysis of metastable wurtzite phase into the self-catalyzed GaP NWs

2021 ◽  
Vol 2086 (1) ◽  
pp. 012020
Author(s):  
O Yu Koval ◽  
V V Fedorov ◽  
I E Eliseev ◽  
A D Bolshakov ◽  
D A Kirilenko ◽  
...  

Abstract In this letter, we report the growth of the self-catalyzed GaP nanowires with a high concentration of wurtzite phase by molecular beam epitaxy. Formation of rotational twins and wurtzite polymorph in vertical nanowires was observed by the developed a complex approach based on the transmission electron microscopy and X-ray diffraction method. Microstructural analysis performed by high resolution transmission electron microscopy and micro-Raman spectroscopy gives us insights on the nanowire formation mechanism and vibrational properties of nanowires with mixed crystal phase. We obtained wurtzite polytype segments with thicknesses lying in the range from several tens up to 500 nm. The results of the work open new perspectives for high phase purity phosphide NWs synthesis and its fast investigation with XRD technique using a laboratory X-Ray source.

2001 ◽  
Vol 16 (7) ◽  
pp. 1960-1966 ◽  
Author(s):  
K. Miyazawa ◽  
H. Satsuki ◽  
M. Kuwabara ◽  
M. Akaishi

The structure and hardness of C60 bulk specimens compressed under 5.5 GPa at room temperature to 600 °C are investigated by high-resolution transmission electron microscopy, x-ray diffraction, and micro-Vickers hardness tests. A strong accumulation of the [1 1 0]tr orientation of high-pressure-treated C60 specimens was developed along the compression axis, and stacking faults and nano-sized deformation twins were introduced into the C60 specimens compressed at 450–600 °C. Curved lattice planes indicating a polymerization of C60 were observed by high resolution transmission electron microscopy (HRTEM). The polymerization of the high-pressure-compressed C60 is also supported by the computer simulation of HRTEM images.


2013 ◽  
Vol 331 ◽  
pp. 522-526
Author(s):  
Jiang Wang ◽  
Jian Li ◽  
You Wen Wang

When the self-made with Teflon lined with stainless steel reaction kettle is used to produce PbTiO3 nanowires with the adoption of hydrothermal reaction , PbTiO3 nanowires with new structure can be made when Pb/Ti equals 2.2. Observed through the Transmission Electron Microscopy (TEM), the bending feature of the PbTiO3 nanowires can be observed for several times when X-ray diffraction (XRD) and Electron Backscattered Diffraction (EBSD) are used to analyse and test the crystal structure of the nanowires. The result of the study shows that the degree of the bending of the PbTiO3 nanowires varies with the intensity of the electron beam from the Transmission Electron Microscopy, and its process can be reversible.


2007 ◽  
Vol 71 (5) ◽  
pp. 493-508 ◽  
Author(s):  
M. Polgári ◽  
B. Bajnóczi ◽  
V. Kovács Kis ◽  
J. Götze ◽  
G. Dobosi ◽  
...  

AbstractKutnohorite with moderate and bright orange-red cathodoluminescence (CL) was studied by CL microscopy and spectroscopy. This mineral was found in fossiliferous concretions composed mainly of rhodochrosite from the Mn-carbonate mineralization at Úrkút, Hungary. The CL microscopy reveals that kutnohorite occurs as impregnations, layers and veinlets. X-ray diffraction, infrared spectroscopy and electron microprobe studies indicate that the luminescent kutnohorite has excess Ca (72.9–80.0 mol.% CaCO3, 16.3–20.5 mol.% MnCO3, 3.3–5.6 mol.% MgCO3 and 0.0–0.5 mol.% FeCO3). Transmission electron microscopy shows that the luminescent carbonate has a dolomite-type structure, with modulated and mosaic microstructures. The CL spectra of this Ca-rich kutnohorite have a single emission band at 630 nm that is characteristic of Mn2+substitution in the structure. Our results provide evidence for moderate-to-bright cathodoluminescence of Mn-rich natural carbonates even at 8–10 wt.% Mn and up to 2400 ppm Fe. The self-quenching of Mn appears incomplete in the case of Ca-rich kutnohorite from Úrkút.


2002 ◽  
Vol 8 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Y.H. Gao ◽  
Y. Bando ◽  
K. Kurashima ◽  
T. Sato

α-Si3N4 nanorods with 20–80 nm width were synthesized by carbothermal reduction of SiO with amorphous activated carbon (AAC) as a reductant. Microstructural characterization of the synthesized nanorods was carried out by high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis. Many Si3N4 nanorods were found to be twisted. Each twisted nanorod contained several straight Si3N4 parts. The straight parts had the rod axes orientated along the 〈1010〉 direction, which is the closest packing direction of α-Si3N4. There were two kinds of joints between the two adjacent straight Si3N4 parts. Formation mechanism of the Si3N4 nanorods is discussed.


2011 ◽  
Vol 311-313 ◽  
pp. 485-488 ◽  
Author(s):  
Shuai Zhang ◽  
Qing Ping Ke ◽  
Lei Zhang ◽  
Tian Di Tang

Formation of layered nanosheets and micro-spheres from a simple self-assembly and polycondensation of n-octadecylsilane (PODS) in water and toluene is demonstrated, respectively. The structure of the micro-spheres was characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). According to the TEM images, it was firstly confirmed that the micro-spheres consist of stacks of bilayered polymerized n-octadecylsilane with head-to-head arrangements. The co-effects of water and solvent were proposed to control the octadecyltrichlsilane hydrolysis process and eventually the morphology of the micro-spheres. A micelle formation mechanism for the formation of the PODS micro-spheres under the co-effects of water and solvent were firstly proposed.


1990 ◽  
Vol 209 ◽  
Author(s):  
M. Griffiths ◽  
J.E. Winegar

ABSTRACTThe techniques employed for X-ray diffraction analysis of dislocation substructures in hexagonal close-packed metals are descibed and assessed by comparison with direct observations using transmission electron microscopy.


2010 ◽  
Vol 43 (2) ◽  
pp. 320-327 ◽  
Author(s):  
Ljiljana Veselinović ◽  
Ljiljana Karanović ◽  
Zoran Stojanović ◽  
Ines Bračko ◽  
Smilja Marković ◽  
...  

A series of cobalt-exchanged hydroxyapatite (CoHAp) powders with different Ca/Co ratios and nominal unit-cell contents Ca10−xCox(PO4)6(OH)2,x= 0, 0.5, 1.0, 1.5 and 2.0, were synthesized by hydrothermal treatment of a precipitate at 473 K for 8 h. Based on ICP (inductively coupled plasma) emission spectroscopy analysis, it was established that the maximum amount of cobalt incorporation saturated at ∼12 at.% under these conditions. The effects of cobalt content on the CoHAp powders were investigated using ICP emission spectroscopy, particle size analysis, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) analyses as well as X-ray powder diffraction (XRPD) including Rietveld analysis. According to XRPD, all the materials are single-phase HAp and CoHAp of low crystallinity. Rietveld analysis shows that Co enrichment causes theccell parameter to decrease at a faster rate than theacell parameter. A microstructural analysis showed anisotropic X-ray line broadening due to crystallite size reduction. In CoHAp there is significant crystal elongation in [001], and the average size decreases with increasing cobalt content. The crystallite morphology transforms from rod-like for the pure HAp to lamellae at the highest degree of Co substitution. The results of Rietveld refinement (symmetry, size and morphology of the crystallites) were confirmed by TEM and HRTEM analysis.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
C. M. Jantzen ◽  
D. G. Howitt

The mullite-SiO2 liquidus has been extensively studied, and it has been shown that the flattening of the liquidus is related to the existence of a metastable region of liquid immiscibility at sub-liquidus temperatures which is detectable by transmission electron microscopy (TEM) (Fig. 1).


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document