scholarly journals Radar range in multi-target mode

2021 ◽  
Vol 2094 (2) ◽  
pp. 022059
Author(s):  
V D Kuptsov ◽  
S I Ivanov ◽  
A A Fedotov ◽  
V L Badenko

Abstract The paper presents the theoretical simulation results of mmWave frequency modulated continuous wave (FMCW) radars in multi-target mode. The speed of objects is determined by a segment of constant frequency, and the ranges are determined twice - by the first and second chirps of long duration, but with different deviations and frequency rise steepness. The method consists in the fact that the proposed functional with the correct speed-range pair has a minimum, which allows you to select the correct speed-range pair from the sets of speeds and ranges of all targets. The dependence of probability of multiple targets speed and range correct determination in the multi-target mode on the range of the FMCW radar has been investigated. The results can be used by developers to design optimized radars.

2012 ◽  
Vol 253-255 ◽  
pp. 1410-1417 ◽  
Author(s):  
Zhi Gang Li ◽  
Qiong Chan Gu

For frequency modulate continuous wave radar, it is necessary and difficult to search the pairs of beat frequencies in an up-chirp mode and a down-chirp mode t o measure range and velocity of multiple targets. However, the inherent problem of FMCW radar is multiple targets detection. False targets can appearance because of mistaking the combination of these beat frequencies. A novel waveform named double-slope symmetrical saw-tooth wave is proposed and its corresponding algorithm is also introduced to resolve the problem of multiple targets detection for automotive anti-collision radar. Computer simulation results and theoretical analysis prove that the method is effective and practical for multiple targets detection in intelligence transportation system.


2021 ◽  
Vol 21 (1) ◽  
pp. 23-34
Author(s):  
Sangdong Kim ◽  
Bongseok Kim ◽  
Youngseok Jin ◽  
Jonghun Lee

This paper proposes a super-resolution-based direction-of-arrivals (DOA) estimation with wide array distance and extrapolation for vital frequency-modulated continuous-wave (FMCW) radar. Most super-resolution algorithms employ the distance between adjacent arrays of half a wavelength, i.e., λ/2. Meanwhile, in the case of narrow field of view of FMCW radar, the resolution of the angle is maintained by increasing the spacing between the arrays even if the number of arrays decreases. In order to employ these characteristics of array spacing and resolution, the proposed algorithm confirms whether or not to use the case where the distance between the adjacent arrays is greater than λ/2. In the case of an array distance >λ/2, a super-resolution algorithm is performed to obtain the enhanced DOA resolution. Moreover, the proposed algorithm virtually generates data between antennae by using extrapolation in order to further improve the performance of the resolution. The simulation results show that the proposed algorithm achieves the results of root-mean-square error similar to conventional super-resolution algorithms while maintaining low complexity. In order to further verify the performance of the proposed estimation algorithm, we demonstrate its employment in practice: experiments in a chamber room and an indoor room were conducted.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 608 ◽  
Author(s):  
Bong-seok Kim ◽  
Youngseok Jin ◽  
Sangdong Kim ◽  
Jonghun Lee

This paper proposes a low-complexity frequency-modulated continuous wave (FMCW) surveillance radar algorithm using random dual chirps in order to overcome the blind-speed problem and reduce the computational complexity. In surveillance radar algorithm, the most widely used moving target indicator (MTI) algorithm is proposed to effectively remove clutter. However, the MTI algorithm has a so-called ‘blind-speed problem’ that cannot detect a target of a specific velocity. In this paper, we try to solve the blind-speed problem of MTI algorithm by randomly selecting two beat signals selected for MTI for each frame. To further reduce the redundant complexity, the proposed algorithm first performs one-dimensional fast Fourier transform (FFT) for range detection and performs multidimensional FFT only when it is determined that a target exists at each frame. The simulation results show that despite low complexity, the proposed algorithm detects moving targets well by avoiding the problem of blind speed. Furthermore, the effectiveness of the proposed algorithm was verified by performing an experiment using the FMCW radar system in a real environment.


2013 ◽  
Vol 791-793 ◽  
pp. 790-794
Author(s):  
Shi Shun Zhu ◽  
Jing Li ◽  
Sun Yan ◽  
Su Jun Luo

Vehicle-mounted shaft generator system with constant frequency and voltage under variable speed condition can adapt to a large speed range of working condition while the vehicle is moving. Its key technologies are a process of rectification-inversion and a composite staggered parallel DC converter. Test research shows that electrical performance of the shaft generator system meets the first kind electric power plant requirements according to GJB 5785-2006 of China, which indicates that the shaft generator system can provide uninterrupted high quality electric power to current general on-board electrical equipment on vehicles under all speed conditions.


2012 ◽  
Vol 546-547 ◽  
pp. 102-109
Author(s):  
Xue Feng Han ◽  
Yang Bai ◽  
Ming Li ◽  
Hong Guang Jia

This article is the study of alternating stress of flexible wheel in harmonic gear drive system. Firstly, according to elasticity theory to theoretically analyze flexible wheel stress; then, based on the basic principle of sub-structure modal synthesis method , use the software of UG、PATRAN and ADAMS to carry out co-simulation; Finally, based on the dynamics simulation, to analyze the alternating stress simulation results of flexible wheel and compare theoretical results and simulation results to come conclusion. The results show that: altering stress simulation results of flexible wheel are coincident with theoretical simulation results, have a deeper understand the stress change trend in the drive process of flexible wheel, lay a foundation for further carrying out dynamics simulation of harmonic gear drive system.


Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 452
Author(s):  
Alexey Noskov ◽  
Sebastian Achilles ◽  
Jörg Bendix

Systematic, practicable, and global solutions are required for insect monitoring to address species decline and pest management concerns. Compact frequency-modulated continuous-wave (FMCW) radar can facilitate these processes. In this work, we evaluate a 60 GHz low-range FMCW radar device for its applicability to insect monitoring. Initial tests showed that radar parameters should be carefully selected. We defined optimal radar configuration during the first experiment and developed a methodology for individual target observation. In the second experiment, we tried various individual-insect targets, including small ones. The third experiment was devoted to mass-insect-target detection. All experiments were intentionally conducted in very uncertain conditions to make them closer to a real field situation. A novel parameter, the Sum of Sequential Absolute Magnitude Differences (SSAMD), has been proposed for uncertainty reduction and noisy data processing. SSAMD enables insect target presence detection and biomass estimation. We have defined ranges of SSAMD for distinguishing noise, insects, and other larger targets (e.g., bats, birds, or other larger objects). We have provided evidence of the high correlation between insect numbers and the average of SSAMD values proving the biomass estimation possibility. This work confirms that such radar devices can be used for insect monitoring. We plan to use the evaluated system assembled with a light trap for real fieldwork in the future.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6443
Author(s):  
Jinmoo Heo ◽  
Yongchul Jung ◽  
Seongjoo Lee ◽  
Yunho Jung

This paper presents the design and implementation results of an efficient fast Fourier transform (FFT) processor for frequency-modulated continuous wave (FMCW) radar signal processing. The proposed FFT processor is designed with a memory-based FFT architecture and supports variable lengths from 64 to 4096. Moreover, it is designed with a floating-point operator to prevent the performance degradation of fixed-point operators. FMCW radar signal processing requires windowing operations to increase the target detection rate by reducing clutter side lobes, magnitude calculation operations based on the FFT results to detect the target, and accumulation operations to improve the detection performance of the target. In addition, in some applications such as the measurement of vital signs, the phase of the FFT result has to be calculated. In general, only the FFT is implemented in the hardware, and the other FMCW radar signal processing is performed in the software. The proposed FFT processor implements not only the FFT, but also windowing, accumulation, and magnitude/phase calculations in the hardware. Therefore, compared with a processor implementing only the FFT, the proposed FFT processor uses 1.69 times the hardware resources but achieves an execution time 7.32 times shorter.


2019 ◽  
Vol 15 (2) ◽  
pp. 138-144
Author(s):  
Adnan Diwan ◽  
Khalid Abdulhasan

voltage sags represent the greatest threat to the sensitive loads of industrial consumers, the microprocessor based-loads, and any electrical sensitive components. In this paper, a special topology is proposed to mitigate deep and long duration sags by using a modified AC to AC boost converter with a new control method. A boost converter is redesigned with a single switch to produces an output voltage that is linearly proportional to the duty cycle of the switch. On the other hand, the proposed control system is based on introducing a mathematical model that relates the missing voltage to the duty cycle of the boost converter switch. The simulation results along with the system analysis are presented to confirm the effectiveness and feasibility of the proposed circuit.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shintaro Hisatake ◽  
Junpei Kamada ◽  
Yuya Asano ◽  
Hirohisa Uchida ◽  
Makoto Tojo ◽  
...  

Abstract The higher the frequency, the more complex the scattering, diffraction, multiple reflection, and interference that occur in practical applications such as radar-installed vehicles and transmitter-installed mobile modules, etc. Near-field measurement in “real situations” is important for not only investigating the origin of unpredictable field distortions but also maximizing the system performance by optimal placement of antennas, modules, etc. Here, as an alternative to the previous vector-network-analyzer-based measurement, we propose a new asynchronous approach that visualizes the amplitude and phase distributions of electric near-fields three-dimensionally without placing a reference probe at a fixed point or plugging a cable to the RF source to be measured. We demonstrate the visualization of a frequency-modulated continuous wave (FMCW) signal (24 GHz ± 40 MHz, modulation cycle: 2.5 ms), and show that the measured radiation patterns of a standard horn antenna agree well with the simulation results. We also demonstrate a proof-of-concept experiment that imitates a realistic situation of a bumper installed vehicle to show how the bumper alters the radiation patterns of the FMCW radar signal. The technique is based on photonics and enables measuring in the microwave to millimeter-wave range.


2012 ◽  
Vol 200 ◽  
pp. 459-461
Author(s):  
Jian Zhu ◽  
Chang Fan Zhang ◽  
Mao Zhen Cui ◽  
Gang Huang

With the shaftless driving technology used in the packaging industry,servo motor control has become increasingly demanding. Beginning with the reasons of chattering, this article proposes a new sliding mode reaching law,adding a power attenuation term in front of the variable speed item,and then affects the shaftless gravure package printing chromatography system with PMSM as the actuator, improved servo motor speed range and efficency of the shaftless driving system.At last,the simulation results indicate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document