scholarly journals Conjugated Heat Exchange in Heat Treatment of Aluminum Ingots Simulation

2021 ◽  
Vol 2096 (1) ◽  
pp. 012053
Author(s):  
A S Gorshenin ◽  
J I Rakhimova ◽  
N P Krasnova

Abstract Casting aluminum to obtain semi-finished products - round ingots, due to uneven cooling in the mold, leads to various defects that affect further machining. To eliminate such defects, heat treatment is carried out - homogenization annealing. One of the homogenization important stages is the cooling of the ingots after heating at a rate that does not lead to the ingot quenching. The cooling medium is air. Knowing the conditions of heat exchange between the cooling air and the high-temperature aluminum billet makes it possible to obtain the ingot’s necessary physical and mechanical properties. The article describes the developed mathematical model of conjugate heat transfer during homogenization annealing of aluminum ingot. It allows analytically calculating the temperature of the ingots depending on the cooling time. To verify the data obtained by the mathematical model, the conjugate heat transfer in the ANSYS program was simulated.

2021 ◽  
Vol 2088 (1) ◽  
pp. 012017
Author(s):  
A S Gorshenin ◽  
N P Krasnova ◽  
J I Rakhimova

Abstract A big problem when casting aluminum ingots is the uneven structure formation, which leads to an increased rejection of products. Nonequilibrium structure elimination is carried out by heat treatment. To obtain the required aluminum ingots’ physicochemical properties, it is necessary to know the conditions of heat transfer between the ingots and the cooling air, i.e. a mathematical model of conjugate heat transfer is needed. The mathematical model obtained by the authors makes it possible to analytically investigate the ingots temperature and cooling air during heat treatment. This mathematical model assumes the heat transfer coefficient calculation. The existing criterion equations for determining the heat transfer coefficient have a drawback - the heat transfer coefficient according to these equations is calculated in circular channels, while heat transfer between aluminum ingots and air occurs in rectangular channels. The article describes the criterion equation identification for heat transfer, used in the analytical study, by the data of the experimental study.


2016 ◽  
Vol 712 ◽  
pp. 237-240 ◽  
Author(s):  
E.S. Dvilis ◽  
Anna G. Knyazeva ◽  
Svetlana N. Sorokova ◽  
Oleg L. Khasanov

The results of theoretical and experimental studies of the synthesis process by the electric sintering of aluminum is a matrix composite. The mathematical model takes into account the conjugate heat transfer and porosity evolution.


2019 ◽  
Vol 9 (1) ◽  
pp. 126-130
Author(s):  
Andrey S. GORSHENIN ◽  
Yulia I. RAKHIMOVA ◽  
Natalya P. KRASNOVA

Casting in a cooled mold is the main way to produce aluminum semi-finished products - round ingots. Continuous casting leads to the formation of a heterogeneous structure. Its elimination occurs during heat treatment - homogenization annealing followed by cooling in the chamber. To study the heat exchange between aluminum ingots and cooling coolant in the chamber, a mathematical model was developed. She showed that the cooling time of ingots in the chamber depends on structural and operational factors. This paper is devoted to the optimization of the design factors of the mathematical model of heat transfer in the cooling chamber of aluminum ingots. The questions of optimization criteria are considered, the objective function with restrictions on the set of feasible solutions of the function is defined.


2021 ◽  
Vol 1 (2) ◽  
pp. 12-20
Author(s):  
Najmeh Keshtkar ◽  
Johannes Mersch ◽  
Konrad Katzer ◽  
Felix Lohse ◽  
Lars Natkowski ◽  
...  

This paper presents the identification of thermal and mechanical parameters of shape memory alloys by using the heat transfer equation and a constitutive model. The identified parameters are then used to describe the mathematical model of a fiber-elastomer composite embedded with shape memory alloys. To verify the validity of the obtained equations, numerical simulations of the SMA temperature and composite bending are carried out and compared with the experimental results.


2020 ◽  
Vol 18 (4) ◽  
pp. 578-585
Author(s):  
Madina Shavdinova ◽  
Konstantin Aronson ◽  
Nina Borissova

The condensing unit is one of the most important elements of the steam turbine of a combined heat and power plant. Defects in elements of the condensing unit lead to disturbances in the steam turbine operation, its failures and breakdowns, as well as efficiency losses of the plant. Therefore, the operating personnel need to know the cause of the malfunction and to correct it immediately. There are no diagnostic models of condensers in the Republic of Kazakhstan at the moment. In this regard, a mathematical model of a condenser based on the methodology of Kaluga Turbine Plant (KTP) has been developed. The mathematical model makes it possible to change the input parameters, plot dependency diagrams, and calculate the plant efficiency indicators. The mathematical model of the condenser can be used to research ways for the improvement of the condensing unit efficiency, for diagnostic purposes of the equipment condition, for the energy audit conduction of the plant, and in the training when performing virtual laboratory research. Using static data processing by linear regression method we obtain that the KTP methodology of condenser calculation is fair at cooling water temperature from 20 °C to 24 °C, but at cooling water temperature from 20 °C to 28 °C, the methodology of JSC "All-Russia Thermal Engineering Institute" (JSC "VTI") is used. One of the ways to increase the condenser efficiency has been proposed. It is the heat transfer augmentation with riffling annular grooves on tubes. This method increases the heat transfer coefficient by 2%, reduces the water subcooling of the heating steam by 0.9 °C, and decreases the cooling area by 2%.


2021 ◽  
pp. 200-206
Author(s):  
I.N. Sedinin ◽  
V.F. Makarov

It is considered the complex of operations of the technological process for the heat treatment of steel 95X18-Sh, as a result of which the material of the samples increases the hardness to 59...61 HRC, and also improves the physical and mechanical properties. A full-scale full factorial experiment of face milling of samples was carried out using the method of mathematical planning. In the experiments, a high-precision machine and a carbide cutting tool were used. To calculate the values of the roughness function, the following are taken as independent variables: cutting speed, feed per tooth and depth of cut. In order to determine the coefficients of the linear equation, a central compositional orthogonal plan of the second order for three factors was used. A matrix of levels of variation of independent variable factors and a matrix of experiment planning were compiled. A regression analysis of the obtained experimental statistical data was carried out using the Microsoft Excel, Statistica and Wolfram Alpha programs. As a result of the calculations, a mathematical model of the roughness of the machined surface and optimal cutting conditions were determined.


2018 ◽  
Vol 941 ◽  
pp. 2278-2283
Author(s):  
Nima Bohlooli Arkhazloo ◽  
Farzad Bazdidi-Tehrani ◽  
Morin Jean-Benoit ◽  
Mohammad Jahazi

Simulation and analysis of thermal interactions during heat treatment is of great importance for accurate prediction of temperature evolution of work pieces and consequently controlling the final microstructure and mechanical properties of products. In the present study, a three-dimensional CFD model was employed to predict the heating process of large size forged ingots inside an industrial gas-fired heat treatment furnace. One-ninth section of a loaded furnace, including details such as fixing bars and high-momentum cup burners, was employed as the computational domain. The simulations were conducted using the ANSYS-FLUENT commercial CFD package. The k-ε, P-1 and Probability Density Function (PDF) in the non-premix combustion, as low computational cost numerical approaches were employed to simulate the turbulent fluid flow, thermal radiation, combustion and conjugate heat transfer inside the furnace. Temperature measurement at different locations of the forged ingot surfaces were used to validate the transient numerical simulations. Good agreement was obtained between the predictions of the CFD model and the experimental measurements, demonstrating the reliability of the proposed approach and application of the model for process optimization purposes. Detailed analysis of conjugate heat transfer together with the turbulent combustion showed that the temperature evolution of the product was significantly dependant on the furnace geometry and the severity of turbulent flow structures in the furnace.


Author(s):  
Zhan-Song Yin ◽  
Hon-Xiong Huang

A mathematical model of the transient heat transfer during the cooling and solidification of extrusion blow molded part was developed. The temperature profiles were obtained by using finite element (FE) code POLYFLOW to solve the mathematical model. The influences of blow mold material, internal heat transfer coefficient, part thickness, and initial parison temperature on cooling were analyzed. An orthogonal experimental design was applied to determine the significance of four process parameters on the time for opening the mold. The calculated results were estimated by analysis of variance (ANVOA). An artificial neural network (ANN) model based on the numerical simulation data was developed to build for predicting the temperature distribution across thickness. The results showed that ANN approach was an effective method for analyzing the cooling of blow molded part.


1986 ◽  
Vol 10 (3) ◽  
pp. 141-152
Author(s):  
H.M. Badr ◽  
S.M. Ahmed

The aim of this work is a theoretical investigation to the problem of heat transfer from an isothermal horizontal cylinder rotating in a quiescent fluid. The study is based on the solution of the conservation equations of mass, momentum and energy for two-dimensional flow of a Boussinesq fluid. The effects of the parameters which influence the heat transfer process namely the Reynolds number and Grashof number are considered while the Prandtl number is held constant. Streamline and isotherm patterns are obtained from the mathematical model and the results are compared with previous experimental data. A satisfactory agreement was found.


Author(s):  
Karsten Kusterer ◽  
Nurettin Tekin ◽  
Tobias Wüllner ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
...  

In modern gas turbines, the film cooling technology is essential for the protection of the hot parts, in particular of the first stage vanes and blades of the turbine, against the hot gases from the combustion process in order to reach an acceptable life span of the components. As the cooling air is usually extracted from the compressor, the reduction of the cooling effort would directly result in increased thermal efficiency of the gas turbine. Understanding of the fundamental physics of film cooling is necessary for the improvement of the state-of-the-art. Thus, huge research efforts by industry as well as research organizations have been undertaken to establish high efficient film cooling technologies. Today it is common knowledge that film cooling effectiveness degradation is caused by secondary flows inside the cooling jets, i.e. the Counter-Rotating Vortices (CRV) or sometimes also called kidney-vortices, which induce a lift-off of the jet. Further understanding of the secondary flow development inside the jet and how this could be influenced, has led to hole configurations, which can induce Anti-Counter-Rotating Vortices (ACRV) in the cooling jets. As a result, the cooling air remains close to the wall and is additionally distributed flatly along the surface. Beside different other technologies, the NEKOMIMI cooling technology is a promising approach to establish the desired ACRVs. It consists of a combination of two holes in just one configuration so that the air is distributed mainly on two cooling air streaks following the special shape of the generated geometry. The NEKOMIMI configuration and two conventional cooling hole configurations (cylindrical and shaped holes) has been investigated numerically under adiabatic and conjugate heat transfer conditions. The influence of the conjugate heat transfer on the secondary flow structure has been analysed. In conjugate heat transfer calculations, it cannot directly derived from the surface temperature distribution if the reached cooling effectiveness values are due to the improved hole configuration with improved secondary flow structure or due to the heat conduction in the material. Therefore, a methodology has been developed, to distinguish between cooling effectiveness due to heat conduction in the material and film cooling flow over the surface. The numerical results shows that for the NEKOMIMI configuration, 77% of the reached overall cooling effectiveness is due to film cooling with improved flow structure in the secondary flow (ACRV) and 23% due to heat conduction in the material. For the cylindrical hole configuration, 10% of the reached overall cooling effectiveness is due to the film cooling flow structure and 90% due to heat conduction in the material.


Sign in / Sign up

Export Citation Format

Share Document