scholarly journals Schottky diodes based on 4H-SiC epitaxial layers

2021 ◽  
Vol 2103 (1) ◽  
pp. 012235
Author(s):  
A M Strel’chuk ◽  
E V Kalinina

Abstract Forward and reverse current-voltage (IV) characteristics of Cr-SiC (4H) Schottky diodes based on epitaxial layers with doping (1-3)· 1015 cm-3 were studied in the temperature range of 300-550 K. It is shown that in many cases the IV characteristics are close to ideal, but a significant spread of the forward IV characteristics of diodes manufactured in the same way on the same epitaxial layer was found, probably due to the spread of the Schottky barrier heights reaching 0.3 eV. Heating of the diode, as well as packaging, can also change the Schottky barrier height. An alternative explanation suggests the presence of a powerful shunt.

2014 ◽  
Vol 778-780 ◽  
pp. 710-713 ◽  
Author(s):  
Hamid Amini Moghadam ◽  
Sima Dimitrijev ◽  
Ji Sheng Han

This paper presents a physical model based on interface traps to explain both the larger barrier heights of practical Schottky diodes in comparison to the theoretically expected values and the appearance of a knee in the log I–V characteristics. According to this model, acceptor-type interface traps near the valance band increase the Schottky barrier height, which shifts the log I–V characteristic to higher forward-bias voltages. In addition to the acceptor traps, donor-type interface traps can appear near the conduction band, and when they do, they cause the knee in the log I–V characteristics as their energy level falls below the Fermi level and the charge associated with these traps changes from positive to neutral.


1991 ◽  
Vol 240 ◽  
Author(s):  
M. Marso ◽  
P. Kordoš ◽  
R. Meyer ◽  
H. Lüth

ABSTRACTThe modification and control of the Schottky barrier height on (n)InGaAs is an important tool at the device preparation as the barrier height is very low, øB° = 0.2 eV. We report about the Schottky barrier enhancement on (n)InGaAs by thin fully depleted surface layers of high doped (p+)InGaAs. Structures with different thicknesses of (p+)InGaAs in the range from 8 to 80 nm were grown by LP MOVPE technique and quasi-Schottky diodes with different contact areas were prepared using titanium as a barrier metal. I-V and I-T characteristics were measured and analysed to obtain basic parameters of prepared diodes, i. e. ideality factor n, effective barrier height øB, series resistance Rgand reverse current density JR (1V). The barrier height enhancement increases with the thickness of the (p+)-layer. Effective barrier heights of øB>0.6 eV, i.e. higher than reported until now, can be obtained with the surface layers of (p+)InGaAs with thicknesses exceeding 25 nm.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2678
Author(s):  
Philipp Wendel ◽  
Dominik Dietz ◽  
Jonas Deuermeier ◽  
Andreas Klein

The current-voltage characteristics of ZnO/RuO2 Schottky diodes prepared by magnetron sputtering are shown to exhibit a reversible hysteresis behavior, which corresponds to a variation of the Schottky barrier height between 0.9 and 1.3 eV upon voltage cycling. The changes in the barrier height are attributed to trapping and de-trapping of electrons in oxygen vacancies.


1994 ◽  
Vol 356 ◽  
Author(s):  
M. Mamor ◽  
E. Finkman ◽  
F. Meyer ◽  
K. Bouziane

AbstractThe Schottky barrier heights (ΦB) for W/Si Schottky diodes have been determined from I–V measurements. The effects of the sputter deposition conditions of the W-films were studied. X-ray diffraction was used to examine the structure and the lattice parameters of the W-films while the stress was determined by using a profilometer from the measurement of the curvature of the substrate after metallization. The resistivity is determined by using a four-point probe. A compressive-to-tensile stress transition is associated with the transformation of the ±—W-phase into the (β—W-phase as the working gas pressure is increased. These effects, which are frequently observed, coïncide with a significant increase of the W-film resistivity and a change (△ΦB≈50 meV) in the Schottky barrier height on n-type. On the other hand, the barrier height on the p-type remains constant under all the experimental conditions investigated. These results are discussed in terms of effects of strain and structure of W-films on the work function of the W, as well as in terms of modification of the pinning position of the Fermi level or else change in the value of the Richardson constant.


2019 ◽  
Vol 5 (10) ◽  
pp. eaax5733 ◽  
Author(s):  
T. Harada ◽  
S. Ito ◽  
A. Tsukazaki

High-temperature operation of semiconductor devices is widely demanded for switching/sensing purposes in automobiles, plants, and aerospace applications. As alternatives to conventional Si-based Schottky diodes usable only at 200°C or less, Schottky interfaces based on wide-bandgap semiconductors have been extensively studied to realize a large Schottky barrier height that makes high-temperature operation possible. Here, we report a unique crystalline Schottky interface composed of a wide-gap semiconductor β-Ga2O3 and a layered metal PdCoO2. At the thermally stable all-oxide interface, the polar layered structure of PdCoO2 generates electric dipoles, realizing a large Schottky barrier height of ~1.8 eV, well beyond the 0.7 eV expected from the basal Schottky-Mott relation. Because of the naturally formed homogeneous electric dipoles, this junction achieved current rectification with a large on/off ratio approaching 108 even at a high temperature of 350°C. The exceptional performance of the PdCoO2/β-Ga2O3 Schottky diodes makes power/sensing devices possible for extreme environments.


2014 ◽  
Vol 778-780 ◽  
pp. 828-831 ◽  
Author(s):  
Junichi Hasegawa ◽  
Kazuya Konishi ◽  
Yu Nakamura ◽  
Kenichi Ohtsuka ◽  
Shuhei Nakata ◽  
...  

We clarified the relationship between the enhanced leakage current of SiC Junction Barrier Schottky diodes and the stacking faults in the SiC crystal at the SiC and metal electrode interface by measuring the electrical and optical properties, and confirm by using the numerical simulations. Numerical simulation considering local lowering of Schottky barrier height, which is 0.8 eV lower than that of 4H-SiC well explained the 2-4 orders of magnitude higher reverse leakage current caused by the SFs. We concluded that the locally lowering of the Schottky barrier height at the 3C-SiC layer in the 4H-SiC surface is a main cause of the large reverse leakage current.


Sign in / Sign up

Export Citation Format

Share Document