scholarly journals Estimation of fatigue life parameters of an Alumino Thermic weld on UIC60 rail joint using LEFM

2021 ◽  
Vol 2115 (1) ◽  
pp. 012051
Author(s):  
Prakash Kumar Sen ◽  
Mahesh Bhiwapurkar ◽  
S P Harsha

Abstract At wheel track contact point, the high stress concentration, poor weld quality, and heterogeneity of weld material are the main factors that cause fatigue crack on any rail weld. Railway network agencies are concerned about the safety of the railway track when it comes to detecting and fixing weld faults to avoid vehicle derailment and loss of lives. This study analysed a numerical simulation of fatigue crack and its evolution under loaded service condition. A 3-D CAD wheel rail weld assembly model was built to study an AT welded joint under fatigue, and for stress concentration factor (SIF) calculation. The results are found by inserting a semi elliptical crack on the rail weld head surface with ANSYS, and then numerical simulation has been performed to get the different three modes of SIF at rail weld crack. The analysis findings data was recorded with critical fracture parameters of SIFs and its number of cycles to failure using LEFM technique and respective results have been plotted. With ANSYS the stress intensity on a crack will be resulted. By using numerical method, the critical crack size and number of cycle load with fatigue life of rail would be determined. The numbers of rail weld inspection per year has been determine by using the maximum number of cycle. The aim of this paper is to develop an effective inspection and maintenance frequency based on rolling contact surfaces crack propagation analyse. This will help to prevent the occurrence of rail failure by taking the required action at the right time, and extend the rail life expectancy, reduce the rail maintenance work and its cost.

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Pavlo Maruschak ◽  
Sergey Panin ◽  
Iryna Danyliuk ◽  
Lyubomyr Poberezhnyi ◽  
Taras Pyrig ◽  
...  

AbstractThe study has established the main regularities of a fatigue failure of offshore gas steel pipes installed using S-lay and J-lay methods.We have numerically analyzed the influence of preliminary deformation on the fatigue life of 09Mn2Si steel at different amplitudes of cyclic loading. The results have revealed the regularities of formation and development of a fatigue crack in 17Mn1Si steel after 40 years of underground operation. The quantitative analysis describes the regularities of occurrence and growth of fatigue cracks in the presence of a stress concentration.


Author(s):  
Kalle Karttunen ◽  
Elena Kabo ◽  
Anders Ekberg

Optimisation of railway track maintenance requires knowledge of how a deteriorated track geometry will affect subsequent loading and damage of the track. This is the scope of the current study where, in particular, the influence on track shift forces and rolling contact fatigue is investigated through numerical simulations. To this end, track geometries are obtained from field measurements. Lateral irregularities are extracted and scaled to represent different levels of geometry deterioration. Multibody simulations of dynamic train–track interaction featuring two freight wagon types are performed under different operational conditions. Track shift forces and rolling contact fatigue damage are further evaluated from simulation results. It is found that track shift forces tend to follow a normal distribution for moderate levels of lateral track geometry irregularities, and that an approximate linear relationship between standard deviations of lateral irregularities and track shift forces can be established. The relation between lateral track irregularity magnitude and rolling contact fatigue is more complex. Increasing levels of lateral irregularities will decrease the fraction of curve length affected by rolling contact fatigue for sharp curves, whereas for shallow curves it increases. As detailed in the article, this is caused by the lateral movement of the contact point as imposed by the track irregularities. Furthermore, the influence of wheel/rail friction and wear is investigated.


2014 ◽  
Vol 891-892 ◽  
pp. 87-92 ◽  
Author(s):  
Benjamin Withy ◽  
Stephen Campbell ◽  
Glenn Stephen

The Royal New Zealand Air Force (RNZAF) utilised the split sleeve cold expansion process to increase the fatigue life of fastener holes in the wings of the C130 transport fleet. As part of the validation of the fatigue improvements offered by the process the Defence Technology Agency conducted a series of fatigue tests on cold expanded fastener holes in aluminium 7075-T651, including specimens with corrosion induced after the cold expansion process had been performed. This research conducted an analysis of fatigue crack origins and modelled the stress concentration factors generated as a result of the corrosion pits. These results were used to explain the differing fatigue life and s-n curves produced by corroded and non-corroded fatigue specimens and the location of crack initiation sites around corroded cold expanded fastener holes.


Author(s):  
GH Majzoobi ◽  
M Agh-Mohammad Dabbagh ◽  
P Asgari ◽  
MK Pipelzadeh ◽  
SJ Hardy

The performance of bolt-nut connections can be improved by enhancing fatigue life of the connections. This can be accomplished by reducing the stress concentration in the threads of the connection. This investigation consists of two parts. In this part (part I), load distribution in threads of some ISO bolts is computed by three-dimensional numerical simulation and Stockley-proposed relations. The results show a close agreement between Stockley relations and the simulations for nearly all bolt sizes. The results indicate that stress concentration is nearly constant regardless of the bolt size. It is also found that the load percentage carried by the first thread varies from 35% for M6 and reaches to 58% for M20 and M30 ISO bolts. The results suggest that the rate of load distribution changes at a point of inflection, i.e. the rate after the inflection point diminishes as the bolt size decreases, whereas before this point, the trend of the rate is reversed. In part II (to be submitted separately), various techniques are employed for the reduction of stress concentration and enhancement of fatigue life of the connections. The techniques are evaluated by numerical simulations and fatigue tests.


Author(s):  
Yuqing Liu ◽  
Philip Diwakar ◽  
Dan Lin ◽  
Ismat Eljaouhari ◽  
Ajay Prakash

High acoustic energy has the potential to cause severe Acoustic Induced Vibration (AIV) that leads to fatigue failure at high stress concentration regions such as fittings in a piping system. Sweepolet fittings have been extensively used as mitigation to counteract the risk of fatigue failure caused by AIV. The advantages of a sweepolet are its integrally reinforced contoured body and low stress concentration. However, there are inconsistencies in published standards and regarding the design limits for sweepolet subjected to AIV. In this paper, Finite Element Analysis is conducted to simulate high frequency pipe shell wall vibration caused by acoustic energy inside the pipe. Peak stress and the associated minimum fatigue life are calculated for sweepolet and sockolet under the same acoustic excitation. By comparing the stress level to that of a sockolet whose design limit to AIV had been published, the design curve and fatigue life equation for sweepolet are developed.


Author(s):  
Sanjay Tiku ◽  
Aaron Dinovitzer ◽  
Vlad Semiga ◽  
Mark Piazza ◽  
Tom Jones

Fracture mechanics methodologies for calculating fatigue lives have been successfully applied by pipeline operators to estimate integrity reassessment intervals. Their application in the definition of pipeline system fatigue lives has been overly conservative in actual practice. The source and magnitude of the conservatism inherent in the calculated fatigue life estimates needs to be identified so operators have a better indicator of when reassessments should take place. The pipe life estimation is especially critical for Electric Resistance Weld (ERW) and Electric Flash Weld (EFW) pipeline systems with longitudinally oriented defects. Prior work on improving fatigue life was initiated through studies completed by Pipeline Research Council International, Inc. (PRCI) to evaluate the sources of differences between fatigue life estimates produced by industry fatigue analysis software and different metallurgists. Two significant sources of conservatism in the fatigue life estimation process were identified: the fatigue crack growth rate (da/dN) and the bulging correction factor applied to axial surface flaws. The experimental and numerical simulation techniques considering the impact of these factors on rate of fatigue crack growth of pipeline axially oriented defects are described in this paper. Finite element modeling was used to simulate pipe bulging in the presence of axial flaws. The effect of the pipe thickness, diameter and flaw geometry was compared with treatments included in existing defect assessment standards. The results illustrate that for longer and deeper flaws existing treatments over represent the local bending due to pipe wall bulging. This results in unnecessarily conservative (shorter) fatigue life estimates. The crack growth rate (da/dN) was measured in a compact tension specimen material fatigue testing program. The test results included a range of ERW and EFW pipe materials with varying vintages and grades. The measured fatigue crack growth rate for the materials tested was found to be lower than that recommended by existing industry standards. This adds to the over conservatism of current approaches. The numerical simulation and materials testing results and related recommendations presented in this paper are compared to existing codified treatments to quantify the level of conservatism inherent in the current state of practice. Recommendations are provided to enhance the precision and better manage conservatism in fatigue crack growth rate calculations. Increased accuracy serves to improve integrity management and would be of interest to pipeline operators, consultants and regulators.


Sign in / Sign up

Export Citation Format

Share Document