scholarly journals Passive system of cooling and refrigerant fluid circulation, assisted by capillary pumping

2021 ◽  
Vol 2116 (1) ◽  
pp. 012092
Author(s):  
O Sologubenko ◽  
J Hemrle ◽  
L Kaufmann

Abstract We propose a concept design of a cooling system, primarily targeting gas-insulated switchgear enclosures which use a mixture of a refrigerant fluid, such as Novec™ 649, and a non-condensable gas for electrical insulation. The novel open-loop system relies on evaporative cooling assisted by capillary pumping, and refrigerant vapor condensation on the walls of the system enclosure. The results of experiments on a laboratory prototype are presented and discussed. Besides cooling, a major benefit of the system is in facilitating the circulation of the gas mixture in the enclosure.

Author(s):  
Amit Pandey ◽  
Maurício de Oliveira ◽  
Chad M. Holcomb

Several techniques have recently been proposed to identify open-loop system models from input-output data obtained while the plant is operating under closed-loop control. So called multi-stage identification techniques are particularly useful in industrial applications where obtaining input-output information in the absence of closed-loop control is often difficult. These open-loop system models can then be employed in the design of more sophisticated closed-loop controllers. This paper introduces a methodology to identify linear open-loop models of gas turbine engines using a multi-stage identification procedure. The procedure utilizes closed-loop data to identify a closed-loop sensitivity function in the first stage and extracts the open-loop plant model in the second stage. The closed-loop data can be obtained by any sufficiently informative experiment from a plant in operation or simulation. We present simulation results here. This is the logical process to follow since using experimentation is often prohibitively expensive and unpractical. Both identification stages use standard open-loop identification techniques. We then propose a series of techniques to validate the accuracy of the identified models against first principles simulations in both the time and frequency domains. Finally, the potential to use these models for control design is discussed.


Author(s):  
Jiechi Xu ◽  
Joseph R. Baumgarten

Abstract The application of the systematic procedures in the derivation of the equations of motion proposed in Part I of this work is demonstrated and implemented in detail. The equations of motion for each subsystem are derived individually and are assembled under the concept of compatibility between the local kinematic properties of the elastic degrees of freedom of those connected elastic members. The specific structure under consideration is characterized as an open loop system with spherical unconstrained chains being capable of rotating about a Hooke’s or universal joint. The rigid body motion, due to two unknown rotations, and the elastic degrees of freedom are mutually coupled and influence each other. The traditional motion superposition approach is no longer applicable herein. Numerical examples for several cases are presented. These simulations are compared with the experimental data and good agreement is indicated.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3306 ◽  
Author(s):  
Zhenao Sun ◽  
Dazhi Wang ◽  
Tianqing Yuan ◽  
Zairan Liu ◽  
Jiahui Yu

A novel control strategy that is based on iterative calculation of structural parameters is proposed for grid-connected inverter in this paper. The proposed strategy has a good dynamic performance, which makes it particularly suitable for the application of PV grid-connected generation. First, a second-order discretization mathematical model of grid-connected inverter control is established in the dq frame. The corresponding relation between the control signal and the output current is deduced in formulas. Then, the values of structural parameters in the formulas can be obtained through iterative calculation, which can further reduce the amount of calculation. After several iteration cycles, the structural parameters are approximately equal to their actual values and the inverter can be controlled as an open-loop system with its dynamic performance optimized. At last, simulation and experiments are performed. The results show that the static performance of the proposed strategy is as good as that of the classical ones, but its dynamic performance is improved significantly.


Author(s):  
G. R. Yantio Njankeu ◽  
J.-Y. Paris ◽  
J. Denape ◽  
L. Pichon ◽  
J.-P. Rivie`re

Titanium alloys are well known to present poor sliding behaviour and high wear values. Various coatings and treatments have been tested to prevent such an occurrence under fretting conditions at high frequency of displacement (100 Hz). An original test apparatus, using an open-loop system instead of a classical imposed displacement simulator, has been performed to directly display the phenomenon of seizure, defined as the stopping of the relative motion between the contacting elements. A classification of the tested coatings has been proposed on the basis of their capacity to maintain full or partial sliding conditions, to present low wear rates and to prevent seizure.


1996 ◽  
Vol 06 (12b) ◽  
pp. 2605-2610 ◽  
Author(s):  
RODOLFO SUÁREZ ◽  
JOSÉ ALVAREZ-RAMIREZ ◽  
BALTAZAR AGUIRRE

A first harmonic approach (describing function method) is used here to analyze the dependence of periodic orbits on the control parameters of planar linear systems with single saturated feedback. It is shown that, if the open-loop system has at least one unstable eigenvalue, periodic orbits converge monotonically to an unstable equilibrium point as the control gains go to infinity.


Author(s):  
Koki Yoshimura ◽  
Kohei Hisamochi

Newly designed plants, e.g., next-generation light water reactor or ESBWR, employ a passive containment cooling system and have an enhanced safety with RHRs (Residual Heat Removal system) including active components. Passive containment cooling systems have the advantage of a simple mechanism, while materials used for the systems are too large to employ these systems to existing plants. Combination of passive system and active system is considered to decrease amount of material for existing plants. In this study, alternatives of applying containment outer pool as a passive system have been developed for existing BWRs, and effects of outer pool on BDBA (Beyond Design Basis Accident) have been evaluated. For the evaluation of containment outer pool, it is assumed that there would be no on-site power at the loss of off-site power event, so called “SBO (Station BlackOut)”. Then, the core of this plant would be uncovered, heated up, and damaged. Finally, the reactor pressure vessel would be breached. Containment gas temperature reached the containment failure temperature criteria without water injection. With water injection, containment pressure reached the failure pressure criteria. With this situation, using outer pool is one of the candidates to mitigate the accident. Several case studies for the outer pool have been carried out considering several parts of containment surface area, which are PCV (Pressure Containment vessel) head, W/W (Wet Well), and PCV shell. As a result of these studies, the characteristics of each containment outer pool strategies have become clear. Cooling PCV head can protect it from over-temperature, although its effect is limited and W/W venting can not be delayed. Cooling suppression pool has an effect of pressure suppressing effect when RPV is intact. Cooling PCV shell has both effect of decreasing gas temperature and suppressing pressure.


1994 ◽  
Vol 116 (2) ◽  
pp. 309-313 ◽  
Author(s):  
Jenq-Tzong H. Chan

A method to synthesize decoupled multivariable control system from a batch of plant test data is introduced. The method is applicable when the system has more inputs than outputs and is open-loop stable. An advantage of this method is that explicit identification of an open-loop system model is not required for controller synthesis.


Author(s):  
G. G. Maidment ◽  
J. F. Missenden ◽  
T. G. Karayiannis ◽  
F Wang

The modern retail cabinets that are used for chilling and displaying food in shops are described in this paper. The deficiencies of the purely convective heat transfer mechanism used to cool food in modern cabinets are highlighted. A novel heat transfer system that provides an integrated conductive/convective cooling mechanism is then proposed. A purpose-developed finite difference model and its application in the study of the novel cooling system are presented in this paper. The model was used to evaluate the performance of the mechanism compared with the conventional convective system. The results indicate that the proposed novel system can provide improved heat transfer, which contributes to lower core food temperatures of approximately 2.5−3.5 K. This can lead to significant reductions in energy and capital costs as well as improvements in food quality and shelf-life. Furthermore, the use of this cooling system could avoid the requirement for electric defrost, which is energy-intensive.


Sign in / Sign up

Export Citation Format

Share Document