scholarly journals Effect of coherent structures on convective heat transfer in a swirling impinging jet

2021 ◽  
Vol 2119 (1) ◽  
pp. 012014
Author(s):  
A S Lobasov

Abstract The present paper reports on the detailed investigation of the flow dynamics and unsteady heat transfer in an impinging jet in regimes with high swirl and vortex breakdown. A combination of the time-resolved stereoscopic PIV, time-resolved PLIF and high-speed IR-thermometry methods is used. Two cases of distances between the jet nozzle and impingement surface are considered, H = d and H = 2d. The Reynolds number is fixed as Re = 5000. The temperature distribution in the flow has a maximum on the jet axis near the surface in the region of the central recirculation zone. The data are processed using the POD method to extract coherent flow structures and quantify temperature fluctuations on the impact surface. The helical vortex structure in the case of H = d influences heat transfer between the swirling jet and the surface, the temperature fluctuations on the surface reach 0.05 degrees.

Author(s):  
Ana Sofia Moita ◽  
Pedro Pontes ◽  
Emanuele Teodori ◽  
António Luís Nobre Moreira

The present paper explores the use of time resolved infrared IR thermography combined with high-speed imagingto describe the liquid-surface interfacial heat transfer phenomena occurring at droplet/wall interactions. Custom made calibration and post-processing methods are proposed and discussed. The results show that the methodology proposed captures very well particular details on droplet dynamics and heat transfer, allowing to identify air bubble trapping at the impact region as well as the temperature variations at the formation of the rim. Furthermore, the calibration proposed here allowed amending some physically incorrect results that were often obtained with the IR camera’s default calibration. The combined analysis of droplet dynamics (e.g. the spreading factor) with the radial temperature profiles, heat flux and cooling effectiveness computation allowed establishing qualitative and quantitative trends on the effect of various parameters on the heat transfer occurring at droplet/wall interactions. Particularly, the effect of the initial surface temperature is observed to play a minor role, as long as it is low enough to prevent the occurrence of boiling. On the other hand, extreme wetting scenarios, such as superhydrophobicity limit the heat transfer between the spreading droplet and the surface. However, the thermal analysis reveals that a major reason for this is not related to the reduced contact time of the droplet on the surface (due to rebound) or air entrapment, but is rather associated to the reduced wetted area caused by thehigh contact angles.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.5012


2021 ◽  
Author(s):  
Saarthak Gupta ◽  
Santosh Hemchandra ◽  
Masayasu Shimura ◽  
Santosh Shanbhogue ◽  
Ahmed Ghoniem

Abstract The precessing vortex core (PVC) is a self-excited flow oscillation state occurring in swirl nozzles. This is caused by the presence of a marginally unstable hydrodynamic helical mode that induces precession of the vortex breakdown bubble (VBB) around the flow axis. The PVC can impact emissions and thermoacoustic stability characteristics of combustors in various ways, as several prior studies have shown. In this paper, we examine the impact of centrebody diameter (Dc) on the PVC in a non-reacting flow in a single nozzle swirl combustor. Time resolved high speed stereoscopic PIV (sPIV) measurements are performed for combinations of two swirl numbers, S = 0.67 and 1.17 and Dc = 9.5 mm, 4.73 mm and 0 (i.e. no centrebody). The bulk flow velocity at the nozzle exit plane is kept constant as Ub = 8 m/s for all cases (Re ∼ 20,000). The centrebody end face lies in the nozzle exit plane. A new modal decomposition technique based on wavelet filtering and proper orthogonal decomposition (POD) provides insight into flow dynamics in terms of global modes extracted from the data. The results show that without a centrebody, a coherent PVC is present in the flow as expected. The introduction of a centrebody makes the PVC oscillations intermittent. These results suggest two routes to intermittency as follows. For S = 0.67, the vortex breakdown bubble (VBB) and centrebody wake recirculation zone (CWRZ) regions are nominally distinct. Intermittent separation and merger due to turbulence result in PVC oscillations due to the de-stabilization of the hydrodynamic VBB precession mode of the flow. In the S = 1.17 case, the time averaged VBB position causes it to engulf the centrebody. In this case, the emergence of intermittent PVC oscillations is a result of the response of the flow to broadband stochastic forcing imposed on the time averaged vorticity field due to turbulence.


Author(s):  
Saarthak Gupta ◽  
Santosh Shanbhogue ◽  
Masayasu Shimura ◽  
Ahmed F. Ghoniem ◽  
Santosh Hemchandra

Abstract The precessing vortex core (PVC) is a self-excited flow oscillation state occurring in swirl nozzles. This is caused by the presence of a marginally unstable hydrodynamic mode that induces precession of the vortex breakdown bubble (VBB) around the flow axis. We examine the impact of a centrebody on PVC dynamics in a non-reacting flow in a swirl nozzle combustor. Time resolved high speed stereoscopic PIV measurements are performed for two swirl numbers, S=0.67 and 1.17 and three centrebody diameters, 9.5mm, 4.73mm and 0 (i.e. no centrebody). The bulk flow velocity at the nozzle exit is kept constant as Ub=8m/s for all cases (Re~20,000). The data is analyzed using a new modal decomposition technique that combines the wavelet transform and proper orthogonal decomposition (WPOD). This gives insight into globally intermittent flow dynamics. A coherent PVC is present in the flow when there is no centrebody. Introducing a centrebody makes the PVC oscillations intermittent. The WPOD results show two qualitatively different intermittent behaviours at S=0.67 and 1.17. For S=0.67, the axial position of the VBB suggests that turbulence destabilizes the PVC mode by causing intermittent separation of the VBB and centrebody wake, resulting in PVC oscillations. For S=1.17, the VBB engulfs the centrebody and stabilizes the PVC mode. Therefore, in this case, PVC oscillations appear to be the flow response to broadband stochastic forcing of the time averaged flow by turbulence.


Author(s):  
Alexander L. Brown

Transportation accidents and the subsequent fire present a concern. Particularly energetic accidents like an aircraft impact or a high speed highway accident can be quite violent. We would like to develop and maintain a capability at Sandia National Laboratories to model these very challenging events. We have identified Smoothed Particle Hydrodynamics (SPH) as a good method to employ for the impact dynamics of the fluid for severe impacts. SPH is capable of modeling viscous and inertial effects for these impacts for short times. We have also identified our fire code Lagrangian/Eulerian (L/E) particle capability as an adequate method for fuel transport and spray modeling. A fire code can also model the subsequent fire for a fuel impact. Surface deposition of the liquid may also be acceptably predicted with the same code. These two methods (SPH and L/E) typically employ complimentary length and timescales for the calculation, and are potentially suited for coupling given adequate attention to relevant details. Length and timescale interactions are important considerations when joining the two capabilities. Additionally, there are physical model inadequacy considerations that contribute to the accuracy of the methodology. These models and methods are presented and evaluated. Some of these concerns are detailed for a verification type scenario used to show the work in progress of this coupling capability. The importance of validation methods and their appropriate application to the genesis of this class of predictive tool are also discussed.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Husain Al Hashimi ◽  
Caleb F. Hammer ◽  
Michel T. Lebon ◽  
Dan Zhang ◽  
Jungho Kim

Techniques based on temperature-sensitive paints (TSP) to measure time-resolved temperature and heat transfer distributions at the interface between a wall and fluid during pool and flow boiling are described. The paints are excited using ultraviolet (UV) light emitting diodes (LEDs), and changes in fluorescence intensity are used to infer local temperature differences across a thin insulator from which heat flux distribution is obtained. Advantages over infrared (IR) thermometry include the ability to use substrates that are opaque to IR (e.g., glass, plexiglass and plastic films), use of low-cost optical cameras, no self-emission from substrates to complicate data interpretation, high speed, and high spatial resolution. TSP-based methods to measure wall heat transfer distributions are validated and then demonstrated for pool and flow boiling.


Author(s):  
Rajneesh Bhardwaj ◽  
Jon P. Longtin ◽  
Daniel Attinger

The objective of this work is to understand the coupling of fluid dynamics and heat transfer during the impact of a millimeter-size water droplet on a flat, solid glass substrate. In this work, a finite-element model is presented which simulates the transient fluid dynamics and heat transfer during the droplet deposition process, considering Laplace forces on the liquid-gas boundary, and the dynamics of wetting. A novel, experimental laser-based method is used to measure temperatures at the solid-liquid interface. This method is based on a thermoreflectance technique and provides unprecedented temporal and spatial resolutions of 1 microsecond and 20 micrometer, respectively. Matching between simulations, temperature measurements and high-speed visualization allows the determination of the interfacial heat transfer coefficient.


Author(s):  
N. K. Bourne ◽  
S. Parry ◽  
D. Townsend ◽  
P. J. Withers ◽  
C. Soutis ◽  
...  

The Taylor test is used to determine damage evolution in carbon-fibre composites across a range of strain rates. The hierarchy of damage across the scales is key in determining the suite of operating mechanisms and high-speed diagnostics are used to determine states during dynamic loading. Experiments record the test response as a function of the orientation of the cylinder cut from the engineered multi-ply composite with high-speed photography and post-mortem target examination. The ensuing damage occurs during the shock compression phase but three other tensile loading modes operate during the test and these are explored. Experiment has shown that ply orientations respond to two components of release; longitudinal and radial as well as the hoop stresses generated in inelastic flow at the impact surface. The test is a discriminant not only of damage thresholds but of local failure modes and their kinetics. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’.


Author(s):  
Victor J. Zimmer ◽  
James L. Rutledge ◽  
Chris Knieriem ◽  
Shichuan Ou

Interest in impingement jet cooling and the associated convection phenomena has grown in the past few decades due in part to the desire for higher operating temperatures and reduced coolant flow in turbines. This study utilizes an array of 55 impingement jets to explore both steady and unsteady impingement flow conditions to evaluate the impact of the inherent unsteadiness present in engines compared to traditional steady experiments. Although unsteadiness occurs naturally in engines, intentional pulsation of coolant flow has also been proposed for flow control purposes, further underscoring the need for examination of the impact of pulsation on the heat transfer. Flow unsteadiness of varying amplitudes was induced at Strouhal numbers of magnitude 10−3 to 10−4. Infrared thermography was used to determine high spatial and temporal resolution Nusselt numbers. Time-resolved Nusselt number and mass flow characteristic waveforms were found to differ substantially as a function of the fluctuation amplitude relative to the mean. In some cases, transient coolant flow increases were associated with non-monotonic behavior in the time resolved Nusselt number. Although with certain configurations unsteady flow demonstrated time-averaged Nusselt numbers equivalent to steady flow with equivalent average mass flux, those with the greatest fluctuation in the amplitude of flow unsteadiness relative to the mean resulted in lower average Nusselt numbers.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2730
Author(s):  
Vladimir Serdyukov ◽  
Nikolay Miskiv ◽  
Anton Surtaev

This paper demonstrates the advantages and prospects of transparent design of the heating surface for the simultaneous study of the hydrodynamic and thermal characteristics of spray cooling. It was shown that the high-speed recording from the reverse side of such heater allows to identify individual droplets before their impact on the forming liquid film, which makes it possible to measure their sizes with high spatial resolution. In addition, such format enables one to estimate the number of droplets falling onto the impact surface and to study the features of the interface evolution during the droplets’ impacts. In particular, the experiments showed various possible scenarios for this interaction, such as the formation of small-scale capillary waves during impacts of small droplets, as well as the appearance of “craters” and splashing crowns in the case of large ones. Moreover, the unsteady temperature field during spray cooling in regimes without boiling was investigated using high-speed infrared thermography. Based on the obtained data, the intensity of heat transfer during spray cooling for various liquid flow rates and heat fluxes was analyzed. It was shown that, for the studied regimes, the heat transfer coefficient weakly depends on the heat flux density and is primarily determined by the flow rate. In addition, the comparison of the processes of spray cooling and nucleate boiling was made, and an analogy was shown in the mechanisms that determine their intensity of heat transfer.


Author(s):  
R. Burke ◽  
C. Copeland ◽  
T. Duda ◽  
M. A. Reyes-Belmonte

One dimensional wave-action engine models have become an essential tool within engine development including stages of component selection, understanding system interactions and control strategy development. Simple turbocharger models are seen as a weak link in the accuracy of these simulation tools and advanced models have been proposed to account for phenomena including heat transfer. In order to run within a full engine code, these models are necessarily simple in structure yet are required to describe a highly complex 3D problem. This paper aims to assess the validity of one of the key assumptions in simple heat transfer models, namely, that the heat transfer between the compressor casing and intake air occurs only after the compression process. Initially a sensitivity study was conducted on a simple lumped capacity thermal model of a turbocharger. A new partition parameter was introduced αA, which divides the internal wetted area of the compressor housing into pre and post compression. The sensitivity of heat fluxes to αA was quantified with respect to the sensitivity to turbine inlet temperature (TIT). At low speeds, the TIT was the dominant effect on compressor efficiency whereas at high speed αA had a similar influence to TIT. However, modelling of the conduction within the compressor housing using an additional thermal resistance caused changes in heat flows of less than 10%. Three dimensional CFD analysis was undertaken using a number of cases approximating different values of αA. It was seen that when considering a case similar to αA=0, meaning that heat transfer on the compressor side is considered to occur only after the compression process, significant temperature could build up in the impeller area of the compressor housing, indicating the importance of the pre-compression heat path. The 3D simulation was used to estimate a realistic value for αA which was suggested to be between 0.15 and 0.3. Using a value of this magnitude in the lumped capacitance model showed that at low speed there would be less than 1% point effect on apparent efficiency which would be negligible compared to the 8% point seen as a result of TIT. In contrast, at high speeds, the impact of αA was similar to that of TIT, both leading to approximately 1% point apparent efficiency error.


Sign in / Sign up

Export Citation Format

Share Document