scholarly journals Mathematical modeling of stress-strain state of the nodal joint of wooden beams

2021 ◽  
Vol 2131 (3) ◽  
pp. 032088
Author(s):  
M S Sergeev ◽  
M V Lukin ◽  
A A Strekalkin ◽  
S I Roshchina

Abstract The article presents a study of the joint of wooden beams on a new type of aluminum composite connector. For the numerical experiment, beams with a cross-section of 150x220(h) mm made of solid wood were selected. The beams were connected at the same level in a perpendicular direction to each other. The connecting connectors were made of two types of alloys: 7075 T6 and 6061 T6. The experiment was carried out until the joint was completely destroyed under static load. The elastic operation of the node for different types of connectors under study was maintained until the load of 50… 70 kN, after which there was a sharp increase in the deformations of the beams. Conducting a numerical study of the elements of wooden structures made it possible to predict their behavior most accurately in real operating conditions.

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Sanket Girhe ◽  
Ruander Cardenas ◽  
Mark MacDonald ◽  
Anandaroop Bhattacharya

Abstract This paper presents an experimentally validated modeling methodology for a new type of blower design known as volumetric resistance blower (VRB). It replaces the traditional centrifugal blower fan blades with a continuous porous medium disk and has been reported to be capable of providing a lower acoustic noise for the same output flow compared to a traditional blower. A three-dimensional transient numerical model of VRB is developed which incorporates the movement of a porous rotor using experimentally determined foam parameters to characterize the porous drag effect and a sliding mesh to simulate the rotation effect. The numerical results are validated with experimentally determined fan curve over broad range of operating conditions. The effect of the foam resistance parameters on the flow characteristics is investigated which serves the rationale for the optimization of these parameters. The model is used to study the sensitivity of the VRB performance to foam parameters using different types of commercially available open-cell reticulated foam.


Author(s):  
Konstantin P. Pyatikrestovsky ◽  
Vladimir I. Travush ◽  
Alexander A. Pogoreltsev ◽  
Alexander A. Klyukin

New prefabricated lightweight structures made of solid wood with connections for joining and building metal screws for wood are proposed. Manufacture and assembly of basic elements-bars with a cross-section of 15x15 cm can be carried out in line conditions on the simplest woodworking equipment. The use of local tim-ber material has a number of advantages (ecological, economic and operational). The description of structures with manufacturing process, examples of buildings with vaulted and hipped roofing, connection arrangement, preparation of experimental samples with the use of new equipment of the National Research Moscow State University of Civil Engineering are given. The method of analysis with allowance for plastic deformations is under consideration. It provides additional economic advantages. The analysis is carried out by the method of integral estimates developed by Prof. V.M. Bondarenko for reinforced concrete structures and adapted to wooden structures by Prof. K.P. Pyatikrestovsky. Special strength criteria are used for the analysis of decks working together with the ribs (in a combined stressed state). It is planned to build buildings for various purposes in the ar-eas of development of the Far North of Russia.


2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shiqiang Lu ◽  
Jinchai Li ◽  
Kai Huang ◽  
Guozhen Liu ◽  
Yinghui Zhou ◽  
...  

AbstractHere we report a comprehensive numerical study for the operating behavior and physical mechanism of nitride micro-light-emitting-diode (micro-LED) at low current density. Analysis for the polarization effect shows that micro-LED suffers a severer quantum-confined Stark effect at low current density, which poses challenges for improving efficiency and realizing stable full-color emission. Carrier transport and matching are analyzed to determine the best operating conditions and optimize the structure design of micro-LED at low current density. It is shown that less quantum well number in the active region enhances carrier matching and radiative recombination rate, leading to higher quantum efficiency and output power. Effectiveness of the electron blocking layer (EBL) for micro-LED is discussed. By removing the EBL, the electron confinement and hole injection are found to be improved simultaneously, hence the emission of micro-LED is enhanced significantly at low current density. The recombination processes regarding Auger and Shockley–Read–Hall are investigated, and the sensitivity to defect is highlighted for micro-LED at low current density.Synopsis: The polarization-induced QCSE, the carrier transport and matching, and recombination processes of InGaN micro-LEDs operating at low current density are numerically investigated. Based on the understanding of these device behaviors and mechanisms, specifically designed epitaxial structures including two QWs, highly doped or without EBL and p-GaN with high hole concentration for the efficient micro-LED emissive display are proposed. The sensitivity to defect density is also highlighted for micro-LED.


Author(s):  
M'hamed Outanoute ◽  
Hamid Garmani ◽  
Mohamed Baslam ◽  
Rachid El Ayachi ◽  
Belaid Bouikhalene

In internet market, content providers (CPs) continue to play a primordial role in the process of accessing different types of data. Competition in this area is fierce; customers are looking for providers that offer them good content (credibility of content and quality of service) with a reasonable price. In this work, the authors analyze this competition between CPs and the economic influence of their strategies on the market. The authors formulate their problem as a non-cooperative game among multiple CPs for the same market. Through a detailed analysis, the researchers prove uniqueness of a pure Nash Equilibrium (NE). Furthermore, a fully distributed algorithm to converge on the NE point is presented. In order to quantify how efficient the NE point is, a detailed analysis of the Price of Anarchy (PoA) is adopted to ensure the performance of the system at equilibrium. Finally, an extensive numerical study is provided to describe the interactions between CPs and to point out the importance of quality of service (QoS) and credibility of content in the market.


2019 ◽  
Vol 136 ◽  
pp. 02030
Author(s):  
Chen Dong ◽  
Chen Ming ◽  
Cai Ouyang ◽  
Li Pengkun

The GRC formwork structural column adopts the factory-based vertical prefabrication production process, which can reduce the floor space, reduce the formwork loss, speed up the construction progress, promote the full decoration of the prefabricated building, and improve the efficiency of the assembly construction. major. In order to optimize the production process of prefabricated GRC formwork column, the overall stress system of GRC formwork structure is analyzed in the concrete pouring process, and the thickness of GRC formwork, the number of steel hoops and the GRC mode are considered. The influence of the shell cross-section size on the mechanical properties. The research results can provide reference for the optimization and design of prefabricated GRC formwork column production process.


2020 ◽  
pp. 108128652096564
Author(s):  
Mriganka Shekhar Chaki ◽  
Victor A Eremeyev ◽  
Abhishek K Singh

In this work, the propagation behaviour of a surface wave in a micropolar elastic half-space with surface strain and kinetic energies localized at the surface and the propagation behaviour of an interfacial anti-plane wave between two micropolar elastic half-spaces with interfacial strain and kinetic energies localized at the interface have been studied. The Gurtin–Murdoch model has been adopted for surface and interfacial elasticity. Dispersion equations for both models have been obtained in algebraic form for two types of anti-plane wave, i.e. a Love-type wave and a new type of surface wave (due to micropolarity). The angular frequency and phase velocity of anti-plane waves have been analysed through a numerical study within cut-off frequencies. The obtained results may find suitable applications in thin film technology, non-destructive analysis or biomechanics, where the models discussed here may serve as theoretical frameworks for similar types of phenomena.


CrystEngComm ◽  
2012 ◽  
Vol 14 (2) ◽  
pp. 351-354 ◽  
Author(s):  
Brendan F. Abrahams ◽  
Robert W. Elliott ◽  
Timothy A. Hudson ◽  
Richard Robson

2011 ◽  
Vol 133 (7) ◽  
Author(s):  
Giulio Lorenzini ◽  
Simone Moretti

High performance heat exchangers represent nowadays the key of success to go on with the trend of miniaturizing electronic components as requested by the industry. This numerical study, based on Bejan’s Constructal theory, analyzes the thermal behavior of heat removing fin modules, comparing their performances when operating with different types of fluids. In particular, the simulations involve air and water (as representative of gases and liquids), to understand the actual benefits of employing a less heat conductive fluid involving smaller pressure losses or vice versa. The analysis parameters typical of a Constructal description (such as conductance or Overall Performance Coefficient) show that significantly improved performances may be achieved when using water, even if an unavoidable increase in pressure losses affects the liquid-refrigerated case. Considering the overall performance: if the parameter called Relevance tends to 0, air prevails; if it tends to 1, water prevails; if its value is about 0.5, water prevails in most of the case studies.


Sign in / Sign up

Export Citation Format

Share Document