scholarly journals Quantitative characterization of the microstructure of in situ aluminum matrix composites

2021 ◽  
Vol 2131 (4) ◽  
pp. 042040
Author(s):  
E S Prusov ◽  
I V Shabaldin ◽  
V B Deev

Abstract A quantitative assessment of the microstructure parameters is necessary for making informed decisions on the development and adjustment of technological parameters for the production of cast metal matrix composites. This study gives an estimate of the size and distribution of the reinforcing phases in the structure of in-situ Al-Mg2Si aluminum matrix composites using an automated technique for analyzing metallographic images realized in the ImageJ open-source software with developed macros. A comparison of the quantitative parameters of the microstructure of composites in different parts of the ingot is carried out. The central regions of the ingot are distinguished by higher values of the average quantity of particles per unit of the microsection surface area in comparison with the peripheral regions. The average size of the synthesized Mg2Si reinforcing particles was 16 μm and practically did not vary in different areas.

2011 ◽  
Vol 284-286 ◽  
pp. 2280-2283 ◽  
Author(s):  
Gui Rong Li ◽  
Xun Yin Zhang ◽  
Yi Nan Zhao ◽  
Fei Yuan ◽  
Ting Wang Zhang ◽  
...  

The K2TiF6,K2ZrF6powder and aluminum were selected as the raw materials to in situ synthesize the particulates reinforced aluminum matrix composites. During the fabrication process the electromagnetic field was imposed. The atomic ratio of Al/Ti/Zr in the particulates is determined as 3/0.4/0.6. The Al3Ti0.4Zr0.6is a new kind of intermetallic compound, some properties of which fall in between those of Al3Ti and Al3Zr. Electromagnetic field plays an important part in fining particles and promoting their uniform distribution. When the electromagnetic induced intensity is 0.05T the particles have 0.5-2μm average size and uniform distribution in matrix. The crystal grains of matrix resemble equiaxed ones. The average size of grains are nearly 100μm, 50μm and 25μm when the electromagnetic induced intensities are 0, 0.025T and 0.05T seperately.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1284 ◽  
Author(s):  
Feng Qiu ◽  
Hao-Tian Tong ◽  
Yu-Yang Gao ◽  
Qian Zou ◽  
Bai-Xin Dong ◽  
...  

Bimodal hybrid in-situ nano-/micro-size TiC/Al composites were prepared with combustion synthesis of Al-Ti-C system and hot press consolidation. Attempt was made to obtain in-situ bimodal-size TiC particle reinforced dense Al matrix composites by using different carbon sources in the reaction process of hot pressing forming. Microstructure showed that the obtained composites exhibited reasonable bimodal-sized TiC distribution in the matrix and low porosity. With the increasing of the carbon nano tube (CNT) content from 0 to 100 wt. %, the average size of the TiC particles decreases and the compressive strength of the composite increase; while the fracture strain increases first and then decreases. The compressive properties of the bimodal-sized TiC/Al composites, especially the bimodal-sized composite synthesized by Al-Ti-C with 50 wt. % CNTs as carbon source, were improved compared with the composites reinforced with single sized TiC. The strengthening mechanism of the in-situ bimodal-sized particle reinforced aluminum matrix composites was revealed.


2015 ◽  
Vol 787 ◽  
pp. 583-587 ◽  
Author(s):  
V. Mohanavel ◽  
K. Rajan ◽  
K.R. Senthil Kumar

In the present study, an aluminum alloy AA6351 was reinforced with different percentages (1, 3 and 5 wt %) of TiB2 particles and they were successfully fabricated by in situ reaction of halide salts, potassium hexafluoro-titanate and potassium tetrafluoro-borate, with aluminium melt. Tensile strength, yield strength and hardness of the composite were investigated. In situ reaction between the inorganic salts K2TiF6 and KBF4 to molten aluminum leads to the formation of TiB2 particles. The prepared aluminum matrix composites were characterized using X-ray diffraction and scanning electron microscope. Scanning electron micrographs revealed a uniform dispersal of TiB2 particles in the aluminum matrix. The results obtained indicate that the hardness and tensile strength were increased with an increase in weight percentages of TiB2 contents.


1999 ◽  
Vol 14 (11) ◽  
pp. 4246-4250
Author(s):  
H. J. Brinkman ◽  
J. Duszczyk ◽  
L. Katgerman

A method is described for the production of dense aluminum matrix composites from elemental powders in one processing step by reactive hot pressing (RHP). It encompasses both the exothermic conversion of reactants to composite product and the following hot compaction of the porous composite product. The RHP method described in this paper takes into account the gas evolution accompanying the exothermic process, ensures complete conversion of reactants, and avoids adverse reactions between aluminum matrix and graphite tooling material. In situ sample temperature measurements enable proper process control, in particular the timing of the full densification step of the hot reaction product.


2021 ◽  
Vol 87 (5) ◽  
pp. 34-42
Author(s):  
N. B. Podymova ◽  
I. E. Kalashnikov ◽  
L. I. Kobeleva

One of the most critical manufacturing defects of cast metal-matrix composites is a non-uniform porosity distribution over the composite volume. Unevenness of the distribution leads not only to local softening, but also plays a key role in the evolution of the damage process under the external loads. The goal of the study is to apply a new laser-ultrasonic method to in-situ study of a local porosity in reactive cast aluminum-matrix composites. The proposed method is based on statistical analysis of the amplitude distribution of backscattered broadband pulses of longitudinal ultrasonic waves in the studied materials. Laser excitation and piezoelectric detection of ultrasound were carried out using a laser-ultrasonic transducer. Two series of reactive cast aluminum-matrix composites were analyzed: reinforced by in situ synthesized Al3Ti intermetallic particles in different volume concentrations and by Al3Ti added with synthetic diamond nanoparticles. It is shown that for both series of the composites, the amplitude distribution of backscattered ultrasonic pulses is approximated by the Gaussian probability distribution applicable for statistics of large number of independent random variables. The empirical dependence of the half-width of this distribution on the local porosity in composites of two series is approximated by the same nearly linear function regardless of the size and fraction of reinforcing particles. This function was used to derive the formula for calculation of the local porosity in the studied composites. The developed technique seems to be promising in revealing potentially dangerous domains with high porosity in reactive-cast metal-matrix composites.


2003 ◽  
Vol 57 (11) ◽  
pp. 1712-1715 ◽  
Author(s):  
Ouyang Liuzhang ◽  
Luo Chengping ◽  
Sui Xiandong ◽  
Zeng Meiqin ◽  
Zhu Min

Sign in / Sign up

Export Citation Format

Share Document