scholarly journals Optimization of Load Forecasting in Smartgrid using Artificial Neural Network based NFTOOL and NNTOOL

2022 ◽  
Vol 2161 (1) ◽  
pp. 012068
Author(s):  
Sthitprajna Mishra ◽  
Bibhu Prasad Ganthia ◽  
Abel Sridharan ◽  
P Rajakumar ◽  
D. Padmapriya ◽  
...  

Abstract The motivation behind the research is the requirement of error-free load prediction for the power industries in India to assist the planners for making important decisions on unit commitments, energy trading, system security & reliability and optimal reserve capacity. The objective is to produce a desktop version of personal computer based complete expert system which can be used to forecast the future load of a smart grid. Using MATLAB, we can provide adequate user interfaces in graphical user interfaces. This paper devotes study of load forecasting in smart grid, detailed study of architecture and configuration of Artificial Neural Network(ANN), Mathematical modeling and implementation of ANN using MATLAB and Detailed study of load forecasting using back propagation algorithm.

2010 ◽  
Vol 39 ◽  
pp. 555-561 ◽  
Author(s):  
Qing Hua Luan ◽  
Yao Cheng ◽  
Zha Xin Ima

The establishing of a precise simulation model for runoff prediction in river with several tributaries is the difficulty of flood forecast, which is also one of the difficulties in hydrologic research. Due to the theory of Artificial Neural Network, using Back Propagation algorithm, the flood forecast model for ShiLiAn hydrologic station in Minjiang River is constructed and validated in this study. Through test, the result shows that the forecast accuracy is satisfied for all check standards of flood forecast and then proves the feasibility of using nonlinear method for flood forecast. This study provides a new method and reference for flood control and water resources management in the local region.


Algorithms ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 195
Author(s):  
Shiping Zhao ◽  
Yong Ma ◽  
Dingxin Leng

Recently, magnetorheological elastomer (MRE) has been paid increasingly attention for vibration mitigation devices with the benefits of low power cost, fail safe performances, and fast responses. To make full use of the striking advantages of MRE device, a highly precise model should be developed to predict its dynamic performances. In the work, an MRE isolator in shear–squeeze mixed mode is developed and tested under dynamic loadings. The nonlinear performances in various displacement amplitude and currents are shown. An artificial neural network model with a back-propagation algorithm is proposed to characterize the nonlinear hysteresis of MRE isolator for its implementation in vibration control applications. This model utilized the displacement, velocity, and applied current as inputs and output force as output. The results show that the proposed model has high modeling accuracy and can well portray the complicated behaviors of MRE isolator with different excitations, which shows a fundamental basis for structural vibration control.


Author(s):  
Mustafa Ayyıldız ◽  
Kerim Çetinkaya

In this study, an artificial neural network model was developed to predict the geometric shapes of different objects using image processing. These objects with various sizes and shapes (circle, square, triangle, and rectangle) were used for the experimental process. In order to extract the features of these geometric shapes, morphological features, including the area, perimeter, compactness, elongation, rectangularity, and roundness, were applied. For the artificial neural network modeling, the standard back-propagation algorithm was found to be the optimum choice for training the model. In the building of the network structure, five different learning algorithms were used: the Levenberg–Marquardt, the quasi-Newton back propagation, the scaled conjugate gradient, the resilient back propagation, and the conjugate gradient back propagation. The best result was obtained by 6-5-1 network architectures with single hidden layers for the geometric shapes. After artificial neural network training, the correlation coefficients ( R2) of the geometric shape values for training and testing data were very close to 1. Similarly, the root-mean-square error and mean error percentage values for the training and testing data were less than 0.9% and 0.004%, respectively. These results demonstrated that the artificial neural network is an admissible model for the estimation of geometric shapes using image processing.


2017 ◽  
Vol 43 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Sinan Mehmet Turp

AbstractThis study investigates the estimated adsorption efficiency of artificial Nickel (II) ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II) ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.


SINERGI ◽  
2018 ◽  
Vol 22 (3) ◽  
pp. 193
Author(s):  
Ika Sari Damayanthi Sebayang ◽  
Agus Suroso ◽  
Alnis Gustin Laoli

The rainfall-runoff model is required to ascertain the relationship between rainfall and runoff. Hydrologists are often confronted with problems of prediction and estimation of runoff using the rainfall date. In actual fact the relationship of rainfall-runoff is known to be highly non-linear and complex. The spatial and temporal precipitation patterns and the variability of watershed characteristics create a more complex hydrologic phenomenon. Runoff is part of the rain water that enters and flows and enters the river body. Rainfall-runoff modeling in this study using Artificial Neural Network, back propagation method and sigmoid binary activation function. This model is used to simulate single or long-term continuous events, water volume, making it very appropriate for urban areas. Back propagation is an inherited learning algorithm and is commonly used by perceptron with multiple layers to change the weights associated with neurons in the hidden layer. Back propagation algorithm uses output error to change the values of its weight in the backward direction. The location of the review is the Ciujung River Basin (DAS), the data used are rainfall and debit data of Ciujung River from 2011-2017. Based on training and simulation results, obtained R2 value: 2012 = 0,85102; 2013 = 0,78661; 2014 = 0,81188; 2015 = 0,77902; 2016 = 0,7279. on model 2 = 0,8724. On model 3 R2:  January = 0,96937; February = 0,92984; March = 0,90666; April = 0,92566; May = 0,9128; June = 0,87975; July= 0,85292; August = 0,95943; September = 0,88229; October = 0,90537; November = 0,93522; December = 0,9111. with MSE (Mean Squared Error) of 0,0018479. The closer value of MSE to 0 and the value of R2 close to 1 then the better designed artificial neural network. If the data used for training more, the artificial neural network will produce a larger R2 value.


SAINTEKBU ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Wiratmoko Yuwono ◽  
Yodik Iwan Herlambang ◽  
Mauridhi Hery Purnomo ◽  
Prima Kristalina

Application of artificial neural network software ( ANN ) has been implemented forpredicting many thing and replace the conventional ways of predicting method using linearregression. Back Propagation algorithm can be used to reach the result of the program thatcan predict the telephone exchange health grade according to the data that has beenrecorded before. By predicting each parameter that has correlation to the telephoneexchange health grade, we can predict the telephone exchange health grade in the nextperiod.Kata kunci : jaringan syaraf tiruan, propagasi balik, nilai kesehatan sentral.


2020 ◽  
Vol 26 (3) ◽  
pp. 209-223
Author(s):  
M. Madhiarasan ◽  
M. Tipaldi ◽  
P. Siano

Artificial neural network (ANN)-based methods belong to one of the most growing research fields within the artificial intelligence ecosystem, and many novel contributions have been developed over the last years. They are applied in many contexts, although some “influencing factors” such as the number of neurons, the number of hidden layers, and the learning rate can impact the performance of the resulting artificial neural network-based applications. This paper provides a deep analysis about artificial neural network performance based on such factors for real-world temperature forecasting applications. An improved back propagation algorithm for such applications is also presented. By using the results of this paper, researchers and practitioners can analyse the encountered issues when applying ANN-based models for their own specific applications with the aim of achieving better performance indexes.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Gozde Pektas ◽  
Erdal Dinc ◽  
Dumitru Baleanu

Simultaneaous spectrophotometric determination of clorsulon (CLO) and invermectin (IVE) in commercial veterinary formulation was performed by using the artificial neural network (ANN) based on the back propagation algorithm. In order to find the optimal ANN model various topogical networks were tested by using different hidden layers. A logsig input layer, a hidden layer of neurons using the logsig transfer function and an output layer of two neurons with purelin transfer function was found suitable for basic configuration for ANN model. A calibration set consisting of CLO and IVE in calibration set was prepared in the concentration range of 1-23 �g/mL and 1-14 �g/mL, repectively. This calibration set contains 36 different synthetic mixtures. A prediction set was prepared in order to evaluate the recovery of the investigated approach ANN chemometric calibration was applied to the simultaneous analysis of CLO and IVE in compounds in a commercial veterinary formulation. The experimental results indicate that the proposed method is appropriate for the routine quality control of the above mentioned active compounds.


Author(s):  
Eldon R. Rene ◽  
M. Estefanía López ◽  
María C. Veiga ◽  
Christian Kennes

Due to their inherent robustness, artificial neural network models have proven to be successful and have been used extensively in biological wastewater treatment applications. However, only recently, with the scientific advancements made in biological waste gas treatment systems, the application of neural networks have slowly gained the practical momentum for performance monitoring in this field. Simple neural models, after vigorous training and testing, are able to generalize the results of a wide range of operating conditions, with high prediction accuracy. This chapter gives a fundamental insight and overview of the process mechanism of different biological waste gas (biofilters, biotrickling filters, continuous stirred tank bioreactors and monolith bioreactors), and wastewater treatment systems (activated sludge process, trickling filter and sequencing batch reactors). The basic theory of artificial neural networks is explained with a clear understanding of the back propagation algorithm. A generalized neural network modelling procedure for waste treatment applications is outlined, and the role of back propagation algorithm network parameters is discussed. Anew, the application of neural networks for solving specific environmental problems is presented in the form of a literature review.


Author(s):  
Mohamed Tahar Makhloufi ◽  
Yassine Abdessemed ◽  
Mohamed Salah Khireddine

<p class="References">This paper presents an intelligent control strategy that uses a feedforward artificial neural network in order to improve the performance of the MPPT (Maximum Power Point Tracker) MPPT photovoltaic (PV) power system based on a modified Cuk converter. The proposed neural network control (NNC) strategy is designed to produce regulated variable DC output voltage. The mathematical model of Cuk converter and artificial neural network algorithm is derived. Cuk converter has some advantages compared to other type of converters. However the nonlinearity characteristic of the Cuk converter due to the switching technique is difficult to be handled by conventional controller. To overcome this problem, a neural network controller with online learning back propagation algorithm is developed. The NNC designed tracked the converter voltage output and improve the dynamic performance regardless load disturbances and supply variations. The proposed controller effectiveness during dynamic transient response is then analyze and verified using MATLAB-Simulink. Simulation results confirm the excellent performance of the proposed NNC.</p>


Sign in / Sign up

Export Citation Format

Share Document