scholarly journals Thin film heat flux sensors for accurate transient and unidirectional heat transfer analysis

2012 ◽  
Vol 395 ◽  
pp. 012084 ◽  
Author(s):  
B Azerou ◽  
B Garnier ◽  
J Lahmar
Author(s):  
Tanweer Alam ◽  
Rakesh Kumar

Heat transfer analysis is the one of the most important designing aspects for many engineering systems. The design prospect in the preview of heat transfer focuses on the prediction of heat flux with the help of measured transient temperature data. Thin film gauges are one of the most predominant method for the heat flux prediction especially for short duration transient temperature measurement. Thin film gauges are usually exposed to the heated environment for the measurement purpose. However, there are some prominent research areas like ablation phenomenon met to spacecraft thermal shields during re-entry to the atmosphere, for which direct exposure of the thin film gauge to the heated environment causes the functional and working difficulties associated with the gauge. In the present study, it is aimed to investigate the suitability of thin film gauge for the conduction-based short duration measurement. An experimental set up is fabricated, which is used to supply the heat load to the hand-made thin film gauge using platinum as sensing element and quartz as a substrate. The transient temperature data is recorded during experiment is further compared with the simulated temperature histories obtained through finite element analysis. The heat flux estimation for both the analysis is made using measured transient temperature data by convolute integral of one- dimensional heat conduction equation. The estimated heat flux value for the experimental and numerical result is found to be in excellent agreement.


Author(s):  
Houssein Ammar ◽  
David Hamadi ◽  
Bertrand Garnier ◽  
Ahmed Ould El Moctar ◽  
Hassan Peerhossaini ◽  
...  

Heat-transfer analysis in microfluidic devices is of great importance in applications such as micro-heat exchangers and microreactors. This work reports on improvements in temperature measurement techniques, which can be the source of large errors due to their intrusiveness and the unreliability of conventional thermal sensors. Gold thin films were deposited on a borosilicate substrate to realize a 2D heat flux sensor for heat-transfer measurement along the main flow within microchannels. Two applications are shown, one related to micro-heat exchangers and the other to microreactors. For the micro-heat exchanger, the effect of length scale on heat transfer in a straight microchannel was investigated and the validity of macroscale correlations for convective heat transfer was checked for deionized water flowing in microchannels of heights 12 to 52 μm. For the microreactor, the reaction enthalpy of an acid–base reaction measured using the new heat-flux sensor had only a 5% discrepancy from the standard value, showing the efficiency of the new thin-film device.


Author(s):  
Sohail Reddy ◽  
George S. Dulikravich ◽  
Ann-Kayana Blanchard

Abstract The effects of graphene platelets and diamond based thin film heat spreaders on maximum temperature of integrated electronic circuits were investigated. A fully three-dimensional conjugate heat transfer analysis was performed to investigate the effects of thin film material and thickness on the temperature of a hot spot and temperature uniformity on the heated surface of the integrated circuit when subjected to forced convective cooling. Two different materials, diamond and graphene were simulated as materials for thin films. The thin film heat spreaders were applied to the top wall of an array of micro pin-fins having circular cross sections. The integrated circuit with a 4 × 3 mm footprint featured a 0.5 × 0.5 mm hot spot located on the top wall which was also exposed to a uniform background heat flux of 500 W cm−1. A hot spot uniform heat flux of magnitude 2000 W cm−2 was centrally situated on the top surface over a small area of 0.5 × 0.5 mm. Both isotropic and anisotropic properties of the thin film heat spreaders made of graphene platelets and diamond were computationally analyzed. The conjugate heat transfer analysis incorporated thermal contact resistance between the thin film and the silicon substrate. The isotropic thin film heat spreaders significantly reduced the hot spot temperature and increased temperature uniformity, allowing for increased thermal loads. Furthermore, it was found that thickness of the thin film heat spreader need not be greater than a few tens of microns


2021 ◽  
Author(s):  
Richard Blythman ◽  
Sajad Alimohammadi ◽  
Nicholas Jeffers ◽  
Darina B. Murray ◽  
Tim Persoons

Abstract While numerous applied studies have successfully demonstrated the feasibility of unsteady cooling solutions, a consensus has yet to be reached on the local instantaneous conditions that result in heat transfer enhancement. The current work aims to experimentally validate a recent analytical solution (on a local time-dependent basis) for the common flow condition of a fully-developed incompressible pulsating flow in a uniformly-heated vessel. The experimental setup is found to approximate the ideal constant heat flux boundary condition well, especially for the decoupled unsteady scenario where the amplitude of the most significant secondary contributions (capacitance and lateral conduction) amounts to 1.2% and 0.2% of the generated heat flux, respectively. Overall, the experimental measurements for temperature and heat flux oscillations are found to coincide well with a recent analytical solution to the energy equation by the authors. Furthermore, local time-dependent heat flux enhancements and degradations are observed to be qualitatively similar to those of wall shear stress from a previous study, suggesting that the thermal performance is indeed influenced by hydrodynamic behaviour.


Author(s):  
Muhsincan Sesen ◽  
Ali Kosar ◽  
Ebru Demir ◽  
Evrim Kurtoglu ◽  
Nazli Kaplan ◽  
...  

In this paper, the results of a series of heat transfer experiments conducted on a compact electronics cooling device based on single phase jet impingement techniques are reported. Deionized-water is propelled into four microchannels of inner diameter 685 μm which are used as nozzles and located at a nozzle to surface distance of 2.5mm. The generated jet impingement is targeted through these channels towards the surface of a nanostructured plate. This plate of size 20mmx20mm consisted of ∼600 nm long copper nanorod arrays with an average nanorod diameter of ∼150 nm, which were integrated on top of a silicon wafer substrate coated with a copper thin film layer (i.e. Cu-nanorod/Cu-film/Silicon-wafer). Heat removal characteristics induced through jet impingement are investigated using the nanostructured plate and compared to results obtained from a flat plate of copper thin film coated on silicon wafer surface. Enhancement in heat transfer up to 15% using the nanostructured plate has been reported in this paper. Heat generated by small scale electronic devices is simulated using a thin film heater placed on an aluminum base. Surface temperatures are recorded by a data acquisition system with the thermocouples integrated on the surface at various locations. Constant heat flux provided by the film heater is delivered to the nanostructured plate placed on top of the base. Volumetric flow rate and heat flux values were varied in order to better characterize the potential enhancement in heat transfer by nanostructured surfaces.


Author(s):  
Solomon Adera ◽  
Rishi Raj ◽  
Evelyn N. Wang

Thermal management is increasingly becoming a bottleneck for a variety of high power density applications such as integrated circuits, solar cells, microprocessors, and energy conversion devices. The performance and reliability of these devices are usually limited by the rate at which heat can be removed from the device footprint, which averages well above 100 W/cm2 (locally this heat flux can exceed 1000 W/cm2). State-of-the-art air cooling strategies which utilize the sensible heat are insufficient at these large heat fluxes. As a result, novel thermal management solutions such as via thin-film evaporation that utilize the latent heat of vaporization of a fluid are needed. The high latent heat of vaporization associated with typical liquid-vapor phase change phenomena allows significant heat transfer with small temperature rise. In this work, we demonstrate a promising thermal management approach where square arrays of cylindrical micropillar arrays are used for thin-film evaporation. The microstructures control the liquid film thickness and the associated thermal resistance in addition to maintaining a continuous liquid supply via the capillary pumping mechanism. When the capillary-induced liquid supply mechanism cannot deliver sufficient liquid for phase change heat transfer, the critical heat flux is reached and dryout occurs. This capillary limitation on thin-film evaporation was experimentally investigated by fabricating well-defined silicon micropillar arrays using standard contact photolithography and deep reactive ion etching. A thin film resistive heater and thermal sensors were integrated on the back side of the test sample using e-beam evaporation and acetone lift-off. The experiments were carried out in a controlled environmental chamber maintained at the water saturation pressure of ≈3.5 kPa and ≈25 °C. We demonstrated significantly higher heat dissipation capability in excess of 100 W/cm2. These preliminary results suggest the potential of thin-film evaporation from microstructured surfaces for advanced thermal management applications.


2018 ◽  
Vol 22 (2) ◽  
pp. 899-897
Author(s):  
Xiaohong Gui ◽  
Xiange Song ◽  
Baisheng Nie

The effects of contact angle and superheat on thin-film thickness and heat flux distribution occurring in a rectangle microgroove are numerically simulated. Accordingly, physical, and mathematical models are built in detail. Numerical results indicate that meniscus radius and thin-film thickness increase with the improvement of contact angle. The heat flux distribution in the thin-film region increases non-linearly as the contact angle decreases. The total heat transfer through the thin-film region increases with the improvement of superheat, and decreases as the contact angle increases. When the contact angle is equal to zero, the heat transfer in the thin-film region accounts for more than 80% of the total heat transfer. Intensive evaporation in the thin-film region plays a key role in heat transfer for the rectangle capillary microgroove. The liquid with higher wetting performance is more capable of playing the advantages of higher intensity heat transfer in thin- film region. The current investigation will result in a better understanding of thin- -film evaporation and its effect on the effective thermal conductivity in the rectangle microgroove.


1981 ◽  
Vol 103 (2) ◽  
pp. 325-330 ◽  
Author(s):  
R. Cook ◽  
C. Y. Tung ◽  
P. C. Wayner

A scanning microphotometer was used to measure in situ the profile of an evaporating decane meniscus in the contact line region on a smooth inclined silicon substrate as a function of the evaporative heat flux. The use of this new experimental design to determine the effect of heat flux on the profile in the contact line region is discussed. The results support the hypothesis that fluid flow in the contact line region of an evaporating thin film results from a change in the thin film thickness profile.


Author(s):  
Ron-Ho Ni ◽  
William Humber ◽  
George Fan ◽  
John P. Clark ◽  
Richard J. Anthony ◽  
...  

Conjugate heat transfer analysis was conducted on a 648 hole film cooled turbine vane using Code Leo and compared to experimental results obtained at the Air Force Research Laboratory Turbine Research Facility. An unstructured mesh with fully resolved film holes for both fluid and solid domains was used to conduct the conjugate heat transfer simulation on a desktop PC with eight cores. Initial heat flux and surface metal temperature predictions showed reasonable agreement with heat flux measurements but under prediction of surface metal temperature values. Root cause analysis was performed, leading to two refinements. First, a thermal barrier coating layer was introduced into the analysis to account for the insulating properties of the Kapton layer used for the heat flux gauges. Second, inlet boundary conditions were updated to more accurately reflect rig measurement conditions. The resulting surface metal temperature predictions showed excellent agreement relative to measured results (+/− 5 degrees K).


Sign in / Sign up

Export Citation Format

Share Document