Rotatable LYSO-GAPD DEXA detector for providing improved spatial resolution

2021 ◽  
Vol 16 (12) ◽  
pp. P12012
Author(s):  
H. Heo ◽  
J. Yang ◽  
J. Kang

Abstract A rotatable lutetium-yttrium-oxyorthosilicate-Geiger-mode-avalanche photodiode (LYSO-GAPD) DEXA detector that can be configured into either a normal-resolution or a high-resolution mode, was proposed and examined. A 3 × 3 × 2 mm3 LYSO was coupled to a 3 × 3 mm2 GAPD. The versatile transformation of the high-resolution mode was possible by employing the rotating controller for the DEXA detector on its own axis, and the intrinsic resolution in this mode was improved by ∼ 33% compared to the normal-resolution mode. Dual-energy X-ray spectra and imaging capabilities were evaluated in both acquisition modes. The respective peak positions of low- and high-energy-beam of normal-resolution mode (high-resolution mode) were 1330 mV (1262 mV) and 2347 mV (2267 mV). The respective peak-to-valley ratios of low- and high-energy-beam of normal-resolution mode (high-resolution mode) were ∼ 2.8 (∼ 2.9) and ∼ 1.2 (∼ 1.1). Considerable improvements in phantom images such as overall contrast and fine-spot detectability were observed in the high-resolution mode. It should be noted that spatial resolution was improved by reducing the detection-area from 3 × 3 mm2 to 2 × 3 mm2 in the high-resolution mode, but count rate was also decreased. These results demonstrated that a rotatable LYSO-GAPD DEXA detector allows to provide high versatility for both high-resolution mode and normal-resolution mode with a single detector.

2021 ◽  
Vol 13 (5) ◽  
pp. 899-905
Author(s):  
Suyoung Park ◽  
Sangwoo Kim ◽  
Han Gil Na ◽  
Changhyun Jin

In this study, the improvement of mechanical properties by physicochemical changes of Ni coating layer after irradiation of high energy beam (HEB) was reported through spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), and nanoindenter. This surface heating method of the irradiation of HEB has advantages of short heating time, uniform temperature distribution, and high heat efficiency by selectively heating desired parts, compared to other post-heat treatment methods. The main reason for this is that irradiation of a irradiation of HEB on the Ni coating layer causes a change in the energy amplitude of the dipole formed in the material. Therefore, the intermolecular friction caused the Ni coating layer to be oxidized to NiO even in a short time, improving the mechanical properties of the surface. In order to understand the diffusion effect of the irradiation of HEB, the indentation hardness, and the skin depth of the Ni coating layer was experimentally performed and theoretically predicted simultaneously.


Author(s):  
J. Ballon ◽  
C. Bérat ◽  
M. Buénerd ◽  
J. Chauvin ◽  
J.Y. Hostachy ◽  
...  

2012 ◽  
Vol 7 (04) ◽  
pp. P04002-P04002 ◽  
Author(s):  
E Bagli ◽  
L Bandiera ◽  
P Dalpiaz ◽  
V Guidi ◽  
A Mazzolari ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1721
Author(s):  
Heon Yong Jeong ◽  
Hyung San Lim ◽  
Ju Hyuk Lee ◽  
Jun Heo ◽  
Hyun Nam Kim ◽  
...  

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 μm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.


2004 ◽  
Vol 37 (6) ◽  
pp. 967-976 ◽  
Author(s):  
Andrew C. Jupe ◽  
Stuart R. Stock ◽  
Peter L. Lee ◽  
Nikhila N. Naik ◽  
Kimberly E. Kurtis ◽  
...  

Spatially resolved energy dispersive X-ray diffraction, using high-energy synchrotron radiation (∼35–80 keV), was used nondestructively to obtain phase composition profiles along the radii of cylindrical cement paste samples to characterize the progress of the chemical changes associated with sulfate attack on the cement. Phase distributions were acquired to depths of ∼4 mm below the specimen surface with sufficient spatial resolution to discern features less than 200 µm thick. The experimental and data analysis methods employed to obtain quantitative composition profiles are described. The spatial resolution that could be achieved is illustrated using data obtained from copper cylinders with a thin zinc coating. The measurements demonstrate that this approach is useful for nondestructively visualizing the sometimes complex transformations that take place during sulfate attack on cement-based materials. These transformations can be spatially related to microstructure as seen by computed microtomography.


1955 ◽  
Vol 26 (2) ◽  
pp. 229-231 ◽  
Author(s):  
G. W. Tautfest ◽  
H. R. Fechter

Sign in / Sign up

Export Citation Format

Share Document