scholarly journals Future projections of temperature and precipitation for Antarctica

Author(s):  
Kamal Tewari ◽  
Saroj Kanta Mishra ◽  
Popat Salunke ◽  
Anupam Dewan

Abstract Antarctica directly impacts the lives of more than half of the world’s population living in the coastal regions. Therefore it is highly desirable to project its climate for the future. But it is a region where the climate models have large inter-modal variability and hence it raises questions about the robustness of the projections available. Therefore, we have examined 87 global models from three modeling consortia (CMIP5, CMIP6, and NEX-GDDP), characterized their fidelity, selected a set of 10 models (MM10) performing satisfactorily, and used them to make the future projection of precipitation and temperature, and assessed the contribution of precipitation towards sea-levels. For the historical period, the multi-model mean (MMM) of CMIP5 performed slightly better than CMIP6 and was worse for NEX-GDDP, with negligible surface temperature bias of approximately 0.5°C and a 17.5% and 19% biases in the mean precipitation noted in both CMIP consortia. These biases considerably reduced in MM10, with 21st century projections showing surface warming of approximately 5.1 - 5.3°C and precipitation increase approximately 44 - 50% against ERA-5 under high-emission scenarios in both CMIP consortia. This projected precipitation increase is much less than that projected using MMM in previous studies with almost the same level of warming, implying approximately 40.0 mm/year contribution of precipitation towards sea-level mitigation against approximately 65.0 mm/year.

2021 ◽  
Author(s):  
Pierre Nabat ◽  
Samuel Somot ◽  
Lola Corre ◽  
Eleni Katragkou ◽  
Shuping Li ◽  
...  

<p>The Euro-Mediterranean region is subject to numerous and various aerosol loads, which interact with radiation, clouds and atmospheric dynamics, with ensuing impact on regional climate. However up to now, aerosol variations are hardly taken into account in most regional climate simulations, although anthropogenic emissions have been dramatically reduced in Europe since the 1980s. Moreover, inconsistencies between regional climate models (RCMs) and their driving global model (GCM) have recently been identified in terms of future radiation and temperature evolution, which could be related to the differences in aerosol forcing. <br>The present study aims at assessing the role of aerosols in the future evolution of the Euro-Mediterranean climate, using a specific multi-model protocol carried out in the Flagship Pilot Study "Aerosol" of the CORDEX program. This protocol relies on three simulations for each RCM: a historical run (1971-2000) and two future RCP8.5 simulations (2021-2050), a first one with evolving aerosols, and a second one with the same aerosols as in the historical period. Six modeling groups have taken part in this protocol, providing nine triplets of simulations. The analysis of these simulations will be presented here. First results show that the future evolution of aerosols has a significant impact on the evolution of surface radiation and surface temperature. In addition RCM runs taking into account the evolution of aerosols are simulating climate change signal closer to the one of their driving GCM than those with constant aerosols.</p>


Climate ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 83 ◽  
Author(s):  
Agnidé Emmanuel Lawin ◽  
Marc Niyongendako ◽  
Célestin Manirakiza

This paper assessed the variability and projected trends of solar irradiance and temperature in the East of Burundi. Observed temperature from meteorological stations and the MERRA-2 data set provided by NASA/Goddard Space Flight Center are used over the historical period 1976–2005. In addition, solar irradiance data provided by SoDa database were considered. Furthermore, projection data from eight Regional Climate Models were used over the periods 2026–2045 and 2066–2085. The variability analysis was performed using a standardized index. Projected trends and changes in the future climate were respectively detected through Mann-Kendall and t-tests. The findings over the historical period revealed increase temperature and decrease in solar irradiance over the last decades of the 20th century. At a monthly scale, the variability analysis showed that excesses in solar irradiance coincide with the dry season, which led to the conclusion that it may be a period of high production for solar energy. In the future climate, upward trends in temperature are expected over the two future periods, while no significant trends are forecasted in solar irradiance over the entire studied region. However, slight decreases and significant changes in solar irradiance have been detected over all regions.


2021 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Daniele Peano ◽  
Silvio Gualdi ◽  
Alessio Bellucci ◽  
Tomas Lovato ◽  
...  

Abstract. The recent advancements in climate modelling partially build on the improvement of horizontal resolution in different components of the simulating system. A higher resolution is expected to provide a better representation of the climate variability, and in this work we are particularly interested in the potential improvements in representing extreme events of high temperature and precipitation. The two versions of the CMCC-CM2 model used here, adopt the highest horizontal resolutions available within the last family of the global coupled climate models de¬veloped at CMCC to participate in the CMIP6 effort. The main aim of this study is to document the ability of the CMCC-CM2 models in representing the spatial distribution of extreme events of temperature and precipitation, under the historical period, comparing model results to observations (ERA5 Reanalysis and CHIRPS observations). For a more detailed evaluation we investigate both 6 hourly and daily time series for the definition of the extreme conditions. In terms of mean climate, the two models are able to realistically reproduce the main patterns of temperature and precipitation. The very-high resolution version (¼ degree horizontal resolution) of the atmospheric model provides better results than the high resolution one (one degree), not only in terms of means but also in terms of extreme events of temperature defined at daily and 6-hourly frequency. This is also the case of average precipitation. On the other hand the extreme precipitation is not improved by the adoption of a higher horizontal resolution.


2020 ◽  
Vol 33 (13) ◽  
pp. 5651-5671 ◽  
Author(s):  
Wang Zhan ◽  
Xiaogang He ◽  
Justin Sheffield ◽  
Eric F. Wood

AbstractOver the past decades, significant changes in temperature and precipitation have been observed, including changes in the mean and extremes. It is critical to understand the trends in hydroclimatic extremes and how they may change in the future as they pose substantial threats to society through impacts on agricultural production, economic losses, and human casualties. In this study, we analyzed projected changes in the characteristics, including frequency, seasonal timing, and maximum spatial and temporal extent, as well as severity, of extreme temperature and precipitation events, using the severity–area–duration (SAD) method and based on a suite of 37 climate models archived in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Comparison between the CMIP5 model estimated extreme events and an observation-based dataset [Princeton Global Forcing (PGF)] indicates that climate models have moderate success in reproducing historical statistics of extreme events. Results from the twenty-first-century projections suggest that, on top of the rapid warming indicated by a significant increase in mean temperature, there is an overall wetting trend in the Northern Hemisphere with increasing wet extremes and decreasing dry extremes, whereas the Southern Hemisphere will have more intense wet extremes. The timing of extreme precipitation events will change at different spatial scales, with the largest change occurring in southern Asia. The probability of concurrent dry/hot and wet/hot extremes is projected to increase under both RCP4.5 and RCP8.5 scenarios, whereas little change is detected in the probability of concurrent dry/cold events and only a slight decrease of the joint probability of wet/cold extremes is expected in the future.


2021 ◽  
Author(s):  
Paola Nanni ◽  
David J. Peres ◽  
Rosaria E. Musumeci ◽  
Antonino Cancelliere

<p>Climate change is a phenomenon that is claimed to be responsible for a significant alteration of the precipitation regime in different regions worldwide and for the induced potential changes on related hydrological hazards. In particular, some consensus has raised about the fact that climate changes can induce a shift to shorter but more intense rainfall events, causing an intensification of urban and flash flooding hazards.  Regional climate models (RCMs) are a useful tool for trying to predict the impacts of climate change on hydrological events, although their application may lead to significant differences when different models are adopted. For this reason, it is of key importance to ascertain the quality of regional climate models (RCMs), especially with reference to their ability to reproduce the main climatological regimes with respect to an historical period. To this end, several studies have focused on the analysis of annual or monthly data, while few studies do exist that analyze the sub-daily data that are made available by the regional climate projection initiatives. In this study, with reference to specific locations in eastern Sicily (Italy), we first evaluate historical simulations of precipitation data from selected RCMs belonging to the Euro-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean area) with high temporal resolution (three-hourly), in order to understand how they compare to fine-resolution observations. In particular, we investigate the ability to reproduce rainfall event characteristics, as well as annual maxima precipitation at different durations. With reference to rainfall event characteristics, we specifically focus on duration, intensity, and inter-arrival time between events. Annual maxima are analyzed at sub-daily durations. We then analyze the future simulations according to different Representative concentration scenarios. The proposed analysis highlights the differences between the different RCMs, supporting the selection of the most suitable climate model for assessing the impacts in the considered locations, and to understand what trends for intense precipitation are to be expected in the future.</p>


2012 ◽  
Vol 44 (1) ◽  
pp. 147-168 ◽  
Author(s):  
D. I. Jeong ◽  
A. St-Hilaire ◽  
T. B. M. J. Ouarda ◽  
P. Gachon

This study suggested strategies to project future precipitation series based on a multi-site hybrid SDM (statistical downscaling model), which can downscale precipitation series at multiple observation sites simultaneously by combining the multivariate multiple linear regression (MMLR) model and the stochastic randomization procedure. The hybrid SDM and future projection methodologies applied to 10 observation sites located in the great area of Montréal, Québec, Canada. Six future independent precipitation series were projected from six sets of future atmospheric predictors using three AOGCMs (Atmosphere-Ocean Global Climate Models, i.e. CGCM2, CGCM3, HadCM3) and three IPCC SRES emission scenarios (B2, A1B and A2). Downscaled climate change signals on wet/dry sequences and extreme indices of precipitation time series were evaluated over the future period from 2060 to 2099 with respect to the historical period from 1961 to 2000. The future scenarios of all three AOGCMs showed a consistent increase of 7.9–44.6% in winter while only those of HadCM3 and CGCM3 showed a decrease of 2.3–23.0% in summer compared to their historical values. Precipitation series of CGCM2 A2 and CGCM3 A2 scenarios yielded the largest increase in winter, while those of HadCM3 B2 and A2 scenarios yielded the largest decrease in summer for all statistics indices.


2019 ◽  
Vol 11 (1) ◽  
pp. 1035-1045
Author(s):  
Farzad Parandin ◽  
Asadollah Khoorani ◽  
Ommolbanin Bazrafshan

Abstract One of the most crucial consequences of climate change involves the alteration of the hydrologic cycle and river flow regime of watersheds. This study was an endeavor to investigate the contributions of climate change to maximum daily discharge (MDD). To this end, the MDD simulation was carried out through implementing the IHACRES precipitation-runoff model in the Payyab Jamash watershed for the 21st century (2016-2100). Subsequently, the observed precipitation and temperature data of the weather stations (1980-2011) as well as 4 multi-model outputs of Global Climate Models (GCMs) under the maximum and minimum Representative Concentration Pathways (RCPs) (2016-2100) were utilized. In order to downscale the output of GCMs, Bias Correction (BC) statistical method was applied. The projections for the 21st century indicated a reduction in Maximum Daily Precipitation (MDP) in comparison with the historic period in the study area. The average projected MDP for the future period was 9 mm/day and 5 mm/ day under 2.6 and 8.5 RCPs (4.6% and 2.6% decrease compared with the historical period), respectively. Moreover, the temperature increased in Jamash Watershed based on 2.6 and 8.5 RCPs by 1∘C and 2∘C(3.7% and 7.4% increase compared with the historical period), respectively. The findings of flow simulation for the future period indicated a decrease in MDD due to the diminished MDP in the study area. The amount of this decrease under RCP8.5 was not remarkable (0.75 m3/s), whereas its value for RCP2.6 was calculated as 40m3/s (respectively, 0.11% and 5.88% decrease compared with the historical period).


2021 ◽  
Author(s):  
Enhui Liao ◽  
Laure Resplandy ◽  
Junjie Liu ◽  
Kevin Bowman

<p>El Niño events weaken the strong natural oceanic source of CO<sub>2</sub> in the Tropical Pacific Ocean, partly offsetting the simultaneous release of CO<sub>2</sub> from the terrestrial biosphere during these events. Yet, uncertainties in the magnitude of this ocean response and how it will respond to the projected increase in extreme El Niño in the future (Cai et al., 2014) limit our understanding of the global carbon cycle and its sensitivity to climate. Here, we examine the mechanisms controlling the air-sea CO<sub>2</sub> flux response to El Niño events and how it will evolve in the future, using multidecadal ocean pCO<sub>2</sub> observations in conjunction with CMIP6 Earth system models (ESMs) and a state‐of‐the‐art ocean biogeochemical model. We show that the magnitude, spatial extent, and duration of the anomalous ocean CO<sub>2</sub> drawdown increased with El Niño intensity in the historical period. However, this relationship reverses in the CMIP6 projections under the high emission scenario. ESMs project more intense El Niño events, but weaker CO<sub>2</sub> flux anomalies in the future. This unexpected response is controlled by two factors: a stronger compensation between thermally-driven outgassing and non-thermal drawdown (56% of the signal); and less pronounced wind anomalies limiting the impact of El Niño on air-sea CO<sub>2</sub> exchanges (26% of the signal). El Niños should no longer reinforce the net global oceanic sink in the future, but have a near-neutral effect or even release CO<sub>2</sub> to the atmosphere, reinforcing the concurrent release of CO<sub>2</sub> from the terrestrial biosphere.</p>


2021 ◽  
Author(s):  
Xue Zheng ◽  
Qing Li ◽  
Tian Zhou ◽  
Qi Tang ◽  
Luke P. Van Roekel ◽  
...  

Abstract. This paper documents the experimental setup and general features of the coupled historical and future climate simulations with the first version of the U.S. Department of Energy (DOE) Energy Exascale Earth System Model (E3SMv1.0). The future projected climate characteristics of E3SMv1.0 at the highest emission scenario (SSP5-8.5) designed in the Scenario Model Intercomparison Project (ScenarioMIP) and the SSP5-8.5 greenhouse gas (GHG) only forcing experiment are analyzed with a focus on regional responses of atmosphere, ocean, sea-ice, and land. Due to its high climate sensitivity, E3SMv1.0 is one of the CMIP6 models with the largest surface warming by the end of the 21st century under the high-emission SSP5-8.5 scenario. The global mean precipitation change is highly correlated to the global temperature change, while the spatial pattern of the change in runoff responds to the precipitation changes. The oceanic mixed layer generally shoals throughout the global ocean. The sea ice, especially in the Northern Hemisphere, rapidly decreases with large seasonal variability. The annual mean AMOC is overly weak with a slower change relative to other CMIP6 models. We detect a significant polar amplification in E3SMv1.0 from the atmosphere, ocean, and sea ice. Comparing the SSP5-8.5 all-forcing experiment with the GHG-only experiment, we find that the unmasking of the aerosol effects due to the decline of the aerosol loading in the future projection period causes accelerated warming in SSP5-8.5 all-forcing experiment. While the oceanic climate response is mainly controlled by the GHG forcing, the land runoff response is impacted primarily by forcings other than GHG over certain regions. However, the importance of the GHG forcing on the land runoff changes grows in the future climate projection period compared to the historical period.


2018 ◽  
Author(s):  
OCTO

The effects of climate change can be perceived when the signal of human-altered climate is louder than the noise of natural climatic variations. The point at which the signal outweighs the noise is called the time of emergence (TOE). If the signal of climate-change is predicted to be statistically greater than the noise in, for example, 20 years, you would say the TOE is 20 years. In this example, in 20 years from now, one would be expected to legitimately notice an altered climate. Using climate models under a high-emission scenario, the authors predicted the TOE for perceivable changes in temperature and precipitation for a variety of both marine and terrestrial habitats, and major population centers.


Sign in / Sign up

Export Citation Format

Share Document