Projection of future daily precipitation series and extreme events by using a multi-site statistical downscaling model over the great Montréal area, Québec, Canada

2012 ◽  
Vol 44 (1) ◽  
pp. 147-168 ◽  
Author(s):  
D. I. Jeong ◽  
A. St-Hilaire ◽  
T. B. M. J. Ouarda ◽  
P. Gachon

This study suggested strategies to project future precipitation series based on a multi-site hybrid SDM (statistical downscaling model), which can downscale precipitation series at multiple observation sites simultaneously by combining the multivariate multiple linear regression (MMLR) model and the stochastic randomization procedure. The hybrid SDM and future projection methodologies applied to 10 observation sites located in the great area of Montréal, Québec, Canada. Six future independent precipitation series were projected from six sets of future atmospheric predictors using three AOGCMs (Atmosphere-Ocean Global Climate Models, i.e. CGCM2, CGCM3, HadCM3) and three IPCC SRES emission scenarios (B2, A1B and A2). Downscaled climate change signals on wet/dry sequences and extreme indices of precipitation time series were evaluated over the future period from 2060 to 2099 with respect to the historical period from 1961 to 2000. The future scenarios of all three AOGCMs showed a consistent increase of 7.9–44.6% in winter while only those of HadCM3 and CGCM3 showed a decrease of 2.3–23.0% in summer compared to their historical values. Precipitation series of CGCM2 A2 and CGCM3 A2 scenarios yielded the largest increase in winter, while those of HadCM3 B2 and A2 scenarios yielded the largest decrease in summer for all statistics indices.

2014 ◽  
Vol 27 (10) ◽  
pp. 3848-3868 ◽  
Author(s):  
John T. Allen ◽  
David J. Karoly ◽  
Kevin J. Walsh

Abstract The influence of a warming climate on the occurrence of severe thunderstorm environments in Australia was explored using two global climate models: Commonwealth Scientific and Industrial Research Organisation Mark, version 3.6 (CSIRO Mk3.6), and the Cubic-Conformal Atmospheric Model (CCAM). These models have previously been evaluated and found to be capable of reproducing a useful climatology for the twentieth-century period (1980–2000). Analyzing the changes between the historical period and high warming climate scenarios for the period 2079–99 has allowed estimation of the potential convective future for the continent. Based on these simulations, significant increases to the frequency of severe thunderstorm environments will likely occur for northern and eastern Australia in a warmed climate. This change is a response to increasing convective available potential energy from higher continental moisture, particularly in proximity to warm sea surface temperatures. Despite decreases to the frequency of environments with high vertical wind shear, it appears unlikely that this will offset increases to thermodynamic energy. The change is most pronounced during the peak of the convective season, increasing its length and the frequency of severe thunderstorm environments therein, particularly over the eastern parts of the continent. The implications of this potential increase are significant, with the overall frequency of potential severe thunderstorm days per year likely to rise over the major population centers of the east coast by 14% for Brisbane, 22% for Melbourne, and 30% for Sydney. The limitations of this approach are then discussed in the context of ways to increase the confidence of predictions of future severe convection.


2018 ◽  
Author(s):  
Tao Tang ◽  
Drew Shindell ◽  
Bjørn H. Samset ◽  
Oliviér Boucher ◽  
Piers M. Forster ◽  
...  

Abstract. Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare Mediterranean precipitation responses to individual forcing agents in a set of state-of-the-art global climate models (GCMs). Our analyses show that both greenhouse gases and aerosols can cause drying in the Mediterranean, and that precipitation is more sensitive to black carbon (BC) forcing than to well-mixed greenhouse gases (WMGHGs) or sulfate aerosol. In addition to local heating, BC appears to reduce precipitation by causing an enhanced positive North Atlantic Oscillation (NAO)/Arctic Oscillation (AO)-like sea level pressure (SLP) pattern, characterized by higher SLP at mid-latitudes and lower SLP at high-latitudes. WMGHGs cause a similar SLP change, and both are associated with a northward diversion of the jet stream and storm tracks, reducing precipitation in the Mediterranean while increasing precipitation in Northern Europe. Though the applied forcings were much larger, if forcings are scaled to those of the historical period of 1901–2010, roughly one-third (31 ± 17 %) of the precipitation decrease would be attributable to global BC forcing with the remainder largely attributable to WMGHGs whereas global scattering sulfate aerosols have negligible impacts. The results from this study suggest that future BC emissions may significantly affect regional water resources, agricultural practices, ecosystems, and the economy in the Mediterranean region.


2012 ◽  
Vol 9 (8) ◽  
pp. 9847-9884
Author(s):  
N. Guyennon ◽  
E. Romano ◽  
I. Portoghese ◽  
F. Salerno ◽  
S. Calmanti ◽  
...  

Abstract. Various downscaling techniques have been developed to bridge the scale gap between global climate models (GCMs) and finer scales required to assess hydrological impacts of climate change. Such techniques may be grouped into two downscaling approaches: the deterministic dynamical downscaling (DD) and the stochastic statistical downscaling (SD). Although SD has been traditionally seen as an alternative to DD, recent works on statistical downscaling have aimed to combine the benefits of these two approaches. The overall objective of this study is to examine the relative benefits of each downscaling approach and their combination in making the GCM scenarios suitable for basin scale hydrological applications. The case study presented here focuses on the Apulia region (South East of Italy, surface area about 20 000 km2), characterized by a typical Mediterranean climate; the monthly cumulated precipitation and monthly mean of daily minimum and maximum temperature distribution were examined for the period 1953–2000. The fifth-generation ECHAM model from the Max-Planck-Institute for Meteorology was adopted as GCM. The DD was carried out with the Protheus system (ENEA), while the SD was performed through a monthly quantile-quantile transform. The SD resulted efficient in reducing the mean bias in the spatial distribution at both annual and seasonal scales, but it was not able to correct the miss-modeled non-stationary components of the GCM dynamics. The DD provided a partial correction by enhancing the trend spatial heterogeneity and time evolution predicted by the GCM, although the comparison with observations resulted still underperforming. The best results were obtained through the combination of both DD and SD approaches.


2020 ◽  
Vol 14 (3) ◽  
pp. 855-879 ◽  
Author(s):  
Alice Barthel ◽  
Cécile Agosta ◽  
Christopher M. Little ◽  
Tore Hattermann ◽  
Nicolas C. Jourdain ◽  
...  

Abstract. The ice sheet model intercomparison project for CMIP6 (ISMIP6) effort brings together the ice sheet and climate modeling communities to gain understanding of the ice sheet contribution to sea level rise. ISMIP6 conducts stand-alone ice sheet experiments that use space- and time-varying forcing derived from atmosphere–ocean coupled global climate models (AOGCMs) to reflect plausible trajectories for climate projections. The goal of this study is to recommend a subset of CMIP5 AOGCMs (three core and three targeted) to produce forcing for ISMIP6 stand-alone ice sheet simulations, based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century. The selection is performed separately for Greenland and Antarctica. Model evaluation over the historical period focuses on variables used to generate ice sheet forcing. For stage (i), we combine metrics of atmosphere and surface ocean state (annual- and seasonal-mean variables over large spatial domains) with metrics of time-mean subsurface ocean temperature biases averaged over sectors of the continental shelf. For stage (ii), we maximize the diversity of climate projections among the best-performing models. Model selection is also constrained by technical limitations, such as availability of required data from RCP2.6 and RCP8.5 projections. The selected top three CMIP5 climate models are CCSM4, MIROC-ESM-CHEM, and NorESM1-M for Antarctica and HadGEM2-ES, MIROC5, and NorESM1-M for Greenland. This model selection was designed specifically for ISMIP6 but can be adapted for other applications.


2019 ◽  
Vol 228 ◽  
pp. 107-121 ◽  
Author(s):  
Francisco J. Tapiador ◽  
Raúl Moreno ◽  
Andrés Navarro ◽  
José Luis Sánchez ◽  
Eduardo García-Ortega

2020 ◽  
Vol 9 (6) ◽  
pp. 361
Author(s):  
Rafaela Lisboa Costa ◽  
Heliofábio Barros Gomes ◽  
Fabrício Daniel Dos Santos Silva ◽  
Rodrigo Lins Da Rocha Júnior

The objective of this work was to analyze and compare results from two generations of global climate models (GCMs) simulations for the city of Recife-PE: CMIP3 and CMIP5. Differences and similarities in historical and future climate simulations are presented for four GCMs using CMIP3 scenarios A1B and A2 and for seven CMIP5 scenarios RCP4.5 and RCP8.5. The scale reduction technique applied to GCMs scenarios is statistical downscaling, employing the same set of large-scale atmospheric variables as predictors for both sets of scenarios, differing only in the type of reanalysis data used to characterize surface variables precipitation, maximum and minimum temperatures. For CMIP3 scenarios the simulated historical climate is 1961-1990 and CMIP5 is 1979-2000, and the validation period is ten years, 1991-2000 for CMIP3 and 2001-2010 for CMIP5. However, for both the future period analyzed is 2021-2050 and 2051-2080. Validation metrics indicated superior results from the historical simulations of CMIP5 over those of CMIP3 for precipitation and minimum and similar temperatures for maximum temperatures. For the future, both CMIP3 and CMIP5 scenarios indicate reduced precipitation and increased temperatures. The potencial evapotranspiration was calculated, projected to increase in scenarios A1B and A2 of CMIP3 and with behavior similar to that observed historically in scenarios RCP4.5 and 8.5.


Author(s):  
Chiranjib Chaudhuri ◽  
Colin Robertson

Despite numerous studies in statistical downscaling methodology, there remains a lack of methods that can downscale from precipitation modeled in global climate models to regional level high resolution gridded precipitation. This paper reports a novel downscaling method using a Generative Adversarial Network (GAN), CliGAN, which can downscale large-scale annual maximum precipitation given by simulation of multiple atmosphere-ocean global climate models (AOGCM) from Coupled Model Inter-comparison Project 6 (CMIP6) to regional-level gridded annual maximum precipitation data. This framework utilizes a convolution encoder-dense decoder network to create a generative network and a similar network to create a critic network. The model is trained using an adversarial training approach. The critic uses the Wasserstein distance loss function and the generator is trained using a combination of adversarial loss Wasserstein distance, structural loss with the multi-scale structural similarity index (MSSIM), and content loss with the Nash-Sutcliff Model Efficiency (NS). The MSSIM index allowed us to gain insight into the model’s regional characteristics and shows that relying exclusively on point-based error functions, widely used in statistical downscaling, may not be enough to reliably simulate regional precipitation characteristics. Further use of structural loss functions within CNN-based downscaling methods may lead to higher quality downscaled climate model products.


Author(s):  
Amina Mami ◽  
Djilali Yebdri ◽  
Sabine Sauvage ◽  
Mélanie Raimonet ◽  
José Miguel

Abstract Climate change is expected to increase in the future in the Mediterranean region, including Algeria. The Tafna basin, vulnerable to drought, is one of the most important catchments ensuring water self-sufficiency in northwestern Algeria. The objective of this study is to estimate the evolution of hydrological components of the Tafna basin, throughout 2020–2099, comparing to the period 1981–2000. The SWAT model (Soil and Water Assessment Tool), calibrated and validated on the Tafna basin with good Nash at the outlet 0.82, is applied to analyze the spatial and temporal evolution of hydrological components, over the basin throughout 2020–2099. The application is produced using a precipitation and temperature minimum/maximum of an ensemble of climate model outputs obtained from a combination of eight global climate models and two regional climate models of Coordinated Regional Climate Downscaling Experiment project. The results of this study show that the decrease of precipitation in January, on average −25%, ranged between −5% and −44% in the future. This diminution affects all of the water components and fluxes of a watershed, namely, in descending order of impact: the river discharge causing a decrease −36%, the soil water available −31%, the evapotranspiration −30%, and the lateral flow −29%.


Sign in / Sign up

Export Citation Format

Share Document