Unsupervised learning of anomalous diffusion data an anomaly detection approach

Author(s):  
Gorka Muñoz-Gil ◽  
Guillem Guigo i Corominas ◽  
Maciej Lewenstein

Abstract The characterization of diffusion processes is a keystone in our understanding of a variety of physical phenomena. Many of these deviate from Brownian motion, giving rise to anomalous diffusion. Various theoretical models exists nowadays to describe such processes, but their application to experimental setups is often challenging, due to the stochastic nature of the phenomena and the difficulty to harness reliable data. The latter often consists on short and noisy trajectories, which are hard to characterize with usual statistical approaches. In recent years, we have witnessed an impressive effort to bridge theory and experiments by means of supervised machine learning techniques, with astonishing results. In this work, we explore the use of unsupervised methods in anomalous diffusion data. We show that the main diffusion characteristics can be learnt without the need of any labelling of the data. We use such method to discriminate between anomalous diffusion models and extract their physical parameters. Moreover, we explore the feasibility of finding novel types of diffusion, in this case represented by compositions of existing diffusion models. At last, we showcase the use of the method in experimental data and demonstrate its advantages for cases where supervised learning is not applicable.

2014 ◽  
Vol 16 (44) ◽  
pp. 24128-24164 ◽  
Author(s):  
Ralf Metzler ◽  
Jae-Hyung Jeon ◽  
Andrey G. Cherstvy ◽  
Eli Barkai

This Perspective summarises the properties of a variety of anomalous diffusion processes and provides the necessary tools to analyse and interpret recorded anomalous diffusion data.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3644 ◽  
Author(s):  
Philippe Desjardins-Proulx ◽  
Idaline Laigle ◽  
Timothée Poisot ◽  
Dominique Gravel

Species interactions are a key component of ecosystems but we generally have an incomplete picture of who-eats-who in a given community. Different techniques have been devised to predict species interactions using theoretical models or abundances. Here, we explore the K nearest neighbour approach, with a special emphasis on recommendation, along with a supervised machine learning technique. Recommenders are algorithms developed for companies like Netflix to predict whether a customer will like a product given the preferences of similar customers. These machine learning techniques are well-suited to study binary ecological interactions since they focus on positive-only data. By removing a prey from a predator, we find that recommenders can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve significantly the results for the K nearest neighbour, although a simple test with a supervised learning approach (random forests) show we can predict interactions with high accuracy using only three traits per species. This result shows that binary interactions can be predicted without regard to the ecological community given only three variables: body mass and two variables for the species’ phylogeny. These techniques are complementary, as recommenders can predict interactions in the absence of traits, using only information about other species’ interactions, while supervised learning algorithms such as random forests base their predictions on traits only but do not exploit other species’ interactions. Further work should focus on developing custom similarity measures specialized for ecology to improve the KNN algorithms and using richer data to capture indirect relationships between species.


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


Author(s):  
Augusto Cerqua ◽  
Roberta Di Stefano ◽  
Marco Letta ◽  
Sara Miccoli

AbstractEstimates of the real death toll of the COVID-19 pandemic have proven to be problematic in many countries, Italy being no exception. Mortality estimates at the local level are even more uncertain as they require stringent conditions, such as granularity and accuracy of the data at hand, which are rarely met. The “official” approach adopted by public institutions to estimate the “excess mortality” during the pandemic draws on a comparison between observed all-cause mortality data for 2020 and averages of mortality figures in the past years for the same period. In this paper, we apply the recently developed machine learning control method to build a more realistic counterfactual scenario of mortality in the absence of COVID-19. We demonstrate that supervised machine learning techniques outperform the official method by substantially improving the prediction accuracy of the local mortality in “ordinary” years, especially in small- and medium-sized municipalities. We then apply the best-performing algorithms to derive estimates of local excess mortality for the period between February and September 2020. Such estimates allow us to provide insights about the demographic evolution of the first wave of the pandemic throughout the country. To help improve diagnostic and monitoring efforts, our dataset is freely available to the research community.


Author(s):  
Linwei Hu ◽  
Jie Chen ◽  
Joel Vaughan ◽  
Soroush Aramideh ◽  
Hanyu Yang ◽  
...  

2021 ◽  
Vol 490 ◽  
pp. 229332
Author(s):  
Shuang Song ◽  
Xiong Zhang ◽  
Chen Li ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document