scholarly journals Experimental Study on the Unconfined Compressive Strength of Artificially Cemented Sand

Author(s):  
Xumin Wang ◽  
Cheng Wang ◽  
Zhao Yi
2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangfeng Lv ◽  
Xiaohui Yang ◽  
Hongyuan Zhou ◽  
Shuo Zhang

In this study, the specimens of cemented sand were prepared by reinforcing it separately with different contents (0.5%, 1.0%, 1.5%, and 2.0%) of three different polymer fibers (polyamide, polyester, and polypropylene) prepared as filaments of different lengths (6, 9, and 12 mm). Then, these specimens were tested, and the improvement effects of the three fibers on the engineering-mechanical behavior of the cemented sand were analyzed and compared. The different microstructures and chemical compositions of the fiber-reinforced cemented sand specimens were investigated using electron microscopy and X-ray diffraction. Compression tests were performed to obtain the stress-strain curves of the specimens. Comparative analysis was performed on the variation patterns of the mechanical parameters (such as unconfined compressive strength and peak strain) of the specimens. Quantitative analysis was performed on the effect of fiber content and fiber filament length on the failure mode of the specimens. It was shown that the inclusion of fibers led to a change from brittle failure to ductile failure. The macro- and microexperimental results revealed that polypropylene fiber had the best improvement effect on the mechanical behavior of the cemented sand, followed by polyester fiber and polyamide fiber. In particular, the cemented sand specimen reinforced with 1.5% polypropylene fiber prepared as 9 mm length filaments had a brittleness index of 0.0578, exhibited ductile failure (in contrast to the brittle failure of the nonreinforced cemented sand), and yielded the highest unconfined compressive strength and shear strength among the specimens.


2006 ◽  
Vol 43 (3) ◽  
pp. 294-309 ◽  
Author(s):  
Zahid Khan ◽  
Anwar Majid ◽  
Giovanni Cascante ◽  
D Jean Hutchinson ◽  
Parsa Pezeshkpour

The effect of variation in cement content, initial water content, void ratio, and curing time on wave velocity (low-strain property) and unconfined compressive strength (large-strain property) of a cemented sand is examined in this paper. The measured pulse velocity is compared with predictions made using empirical and analytical models, which are mostly based on the published results of resonant column tests. All specimens are made by mixing silica sand and gypsum cement (2.5–20% by weight) and tested under atmospheric pressure. The wave velocity reaches a maximum at optimum water content, and it is mostly affected by the number of cemented contacts; whereas compressive strength is governed not only by the number of contacts but also by the strength of contacts. Experimental relationships are developed for wave velocity and unconfined compressive strength as functions of cement content and void ratio. Available empirical models underpredict the wave velocity (60% on average), likely because of the effect of microfractures induced by confinement during the testing. Wave velocity is found to be a good indicator of cement content and unconfined compressive strength for the conditions of this study.Key words: wave velocity, low-strain stiffness, cemented sands, elastic moduli, unconfined compressive strength.


2020 ◽  
Vol 12 (1) ◽  
pp. 39-52
Author(s):  
Jair de Jesús Arrieta Baldovino ◽  
Ronaldo Luis dos Santos Izzo

The Guabirotuba Formation is located over the sedimentary basin of the city of Curitiba (Brazil). The gray layer of the Formation extends from 1 to 50 m deep. Although it is the most characteristic layer of the Formation, there are no studies of stabilization of these soils for urban paving purposes inthe city. Thus, this paper presents an experimental study of the stabilization of gray silt soil with Portland cement (PC) using cure times (t) of 7, 14, and 28 days. Cement contents (C) of 3, 5, 7, and 9% in relation to soil dry mass were used. After cure times, unconfined compressive strength (qu) and durability tests were performed using wet/dry cycles (W/D). The results show an increase of quwith increasing cement content, increasing molding density and increasing curing time. In addition, the durability of the mixtures increased when more cement was added. It was found that the values of quare dependent on the semi-empirical porosity/cement ratio (η/Civ). Finally, 5% is the minimum cement content for using the soil in paving purposes.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1508-1511
Author(s):  
Yun Lian Song ◽  
Kai Liu ◽  
Min Lin ◽  
Peng Liu

5% cement was mixed into the cement stabilized macadam base material, then the cement was replaced by SES-I early strength admixture according to the amount of cement (mass ration) which was 0%, 8%, 10%, 12%, 14% and 16%. The unconfined compressive strength Rc of cement stabilized macadam material was tested during different curing periods 12h, 1d, 2d, 3d, 7d and 28d. Depending on the experimental date, the effect of early strength admixture on cement stabilized macadam material was investigated, and the logarithmic curve relationship can be fitted between the SES-I admixture and Rc. The experiment result shows that the 14% dosage of early strength agent is the best result for material early strength, and it also provides the foundation to increase early strength and shorten the construction period for meeting the project design demand.


Sign in / Sign up

Export Citation Format

Share Document