scholarly journals The Impact of Solar Panel Temperature to Solar Home System (SHS) Output Voltage

Author(s):  
Hamzah Eteruddin ◽  
Atmam ◽  
David Setiawan
SINERGI ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 73 ◽  
Author(s):  
Hamzah Eteruddin ◽  
Atmam Atmam ◽  
David Setiawan ◽  
Yanuar Z. Arief

People can make solar energy alternative energy by employing solar panels to generate electricity. The utilization of solar energy on a solar panel to generate electricity is affected by the weather and the duration of the radiation, and they will affect the solar panel’s temperature. There are various types of solar panels that can be found on the market today, including Mono-Crystalline and Poly-Crystalline. The difference in the material used needs to be observed in terms of temperature changes in the solar module. Our study’s findings showed that a change in the temperature would impact the solar panel’s output voltage, and the solar panel’s output voltage would change when it was connected to the load although the measured temperatures were almost the same.


Author(s):  
AnuPriya K R ◽  
Sasilatha T

The system represented during this paper uses 3 matrix converters and a high frequency electrical device to attain isolation and voltage transformation from primary to secondary aspect. Two matrix converters manufacture high frequency voltage across a transformer, with open all over primary. a 3rd matrix device converts the high frequency cut voltage to line frequency. The non-idealities like outflow inductance of the electrical device have a big impact on the device performance. This paper studies the impact of outflow inductance on the regulation of the output voltage of the device. The simulation study has been carried out in SIMULINK and also the results are presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Joannes I. Laveyne ◽  
Dimitar Bozalakov ◽  
Greet Van Eetvelde ◽  
Lieven Vandevelde

In Belgium, and many other countries, rooftop solar panels are becoming a ubiquitous form of decentralised energy production. The increasing share of these distributed installations however imposes many challenges on the operators of the low-voltage distribution grid. They must keep the voltage levels and voltage balance on their grids in check and are often regulatory required to provide sufficient reception capacity for new power producing installations. By placing solar panels in different inclinations and azimuth angles, power production profiles can possibly be shifted to align more with residential power consumption profiles. In this article, it is investigated if the orientation of solar panels can have a mitigating impact on the integration problems on residential low voltage distribution grids. An improved simulation model of a solar panel installation is constructed, which is used to simulate the impact on a residential distribution grid. To stay as close to real-life conditions as possible, real irradiation data and a model of an existing grid are used. Both the developed model as the results on grid impact are evaluated.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 938 ◽  
Author(s):  
Nishant Narayan ◽  
Ali Chamseddine ◽  
Victor Vega-Garita ◽  
Zian Qin ◽  
Jelena Popovic-Gerber ◽  
...  

Off-grid solar home systems (SHSs) currently constitute a major source of providing basic electricity needs in un(der)-electrified regions of the world, with around 73 million households having benefited from off-grid solar solutions by 2017. However, in and of itself, state-of-the-art SHSs can only provide electricity access with adequate power supply availability up to tier 2, and to some extent, tier 3 levels of the Multi-tier Framework (MTF) for measuring household electricity access. When considering system metrics of loss of load probability (LLP) and battery size, meeting the electricity needs of tiers 4 and 5 is untenable through SHSs alone. Alternatively, a bottom-up microgrid composed of interconnected SHSs is proposed. Such an approach can enable the so-called climb up the rural electrification ladder. The impact of the microgrid size on the system metrics like LLP and energy deficit is evaluated. Finally, it is found that the interconnected SHS-based microgrid can provide more than 40% and 30% gains in battery sizing for the same LLP level as compared to the standalone SHSs sizes for tiers 4 and 5 of the MTF, respectively, thus quantifying the definite gains of an SHS-based microgrid over standalone SHSs. This study paves the way for visualizing SHS-based rural DC microgrids that can not only enable electricity access to the higher tiers of the MTF with lower battery storage needs but also make use of existing SHS infrastructure, thus enabling a technologically easy climb up the rural electrification ladder.


1970 ◽  
Vol 46 (1) ◽  
pp. 117-122 ◽  
Author(s):  
M Eusuf ◽  
M Khanam ◽  
S Khatun

In part II of this series, it was reported that the solar home system (SHS) supplied by REB in some islands of the Meghna river in the district of Narsingdi could not meet the demand of the recipients in the rainy season when the sky remained overcast with cloud. The tilt angle for all installations was 45° facing south. In this study, effects of direct and diffuse sunlight with variation of tilt angles from 0° to 45° were studied using a mono crystalline silicon cell. Pyranometer and the solar panel were kept under identical conditions. Energy absorbed by the solar panel in diffuse sunlight was found 0.55% of that received by the Pyranometer under similar conditions showing that mono crystalline silicon solar cell of the type under study was not suitable for use in SHS. Moreover, the gap between the panel and the solid surface below it has significant effects on the efficiency of the solar cell. Further similar study using different kinds of cells- mono crystalline, poly crystalline and amorphous is needed for proper designs of SHS. Optimization of the gap between the panel and the solid surface below it is important for roof-mounted and ground-mounted panels. Key words: Silicon solar cells; Tilt angle; Diffuse light; Home lighting; Monocrystaline. DOI: http://dx.doi.org/10.3329/bjsir.v46i1.8114 Bangladesh J. Sci. Ind. Res. 46(1), 117-122, 2011   


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 434 ◽  
Author(s):  
Andrés Morán-Durán ◽  
Albino Martínez-Sibaja ◽  
José Pastor Rodríguez-Jarquin ◽  
Rubén Posada-Gómez ◽  
Oscar Sandoval González

Fuel cells are promising devices to transform chemical energy into electricity; their behavior is described by principles of electrochemistry and thermodynamics, which are often difficult to model mathematically. One alternative to overcome this issue is the use of modeling methods based on artificial intelligence techniques. In this paper is proposed a hybrid scheme to model and control fuel cell systems using neural networks. Several feature selection algorithms were tested for dimensionality reduction, aiming to eliminate non-significant variables with respect to the control objective. Principal component analysis (PCA) obtained better results than other algorithms. Based on these variables, an inverse neural network model was developed to emulate and control the fuel cell output voltage under transient conditions. The results showed that fuel cell performance does not only depend on the supply of the reactants. A single neuro-proportional–integral–derivative (neuro-PID) controller is not able to stabilize the output voltage without the support of an inverse model control that includes the impact of the other variables on the fuel cell performance. This practical data-driven approach is reliably able to reduce the cost of the control system by the elimination of non-significant measures.


Sign in / Sign up

Export Citation Format

Share Document