scholarly journals Study on the evaluation system of green development in Tuojiang River Basin based on entropy weight method and grey relation analysis

Author(s):  
Shiyi Zheng ◽  
Chunhu Zhang ◽  
Ying Zhou
2020 ◽  
Vol 165 ◽  
pp. 06050
Author(s):  
Weixia Wang ◽  
He Jun

In order to improve the rationality and fairness of Teachers’ “Double-qualified” Ability, the article establishes an evaluation model based on 14 evaluation indexes of teachers’ “double-qualified” ability. it adopts Delphi - entropy weight method to weight the evaluation index, and then combines TOPSIS method to evaluate the evaluation object. In the evaluation of TOPSIS method, the traditional TOPSIS weight method was improved, and the entropy weight-delphi method was used to determine the index weight, which was a combination of subjective and objective, making the evaluation system more objective, scientific and reasonable.It not only avoids the subjectivity of decision makers and limitations, but also eliminates the phenomenon of indexes in common impact assessment results and finally applies it to a university teacher “Double division and triple energy” evaluation system, to provide theoretical basis and feasibility analysis for the “double type” teachers team construction. Chinese library classification number: O224 Document identification code: A


2019 ◽  
Vol 11 (14) ◽  
pp. 3793 ◽  
Author(s):  
Yuangang Li ◽  
Maohua Sun ◽  
Guanghui Yuan ◽  
Qi Zhou ◽  
Jinyue Liu

In order to evaluate the atmospheric environment sustainability in the provinces of Northeast China, this paper has constructed a comprehensive evaluation model based on the rough set and entropy weight methods. This paper first constructs a Pressure-State-Response (PSR) model with a pressure layer, state layer and response layer, as well as an atmospheric environment evaluation system consisting of 17 indicators. Then, this paper obtains the weight of different indicators by using the rough set method and conducts equal-width discrete analysis and clustering analysis by using SPSS software. This paper has found that different discrete methods will end up with different reduction sets and multiple indicators sharing the same weight. Therefore, this paper has further introduced the entropy weight method based on the weight solution determined by rough sets and solved the attribute reduction sets of different layers by using the Rosetta software. Finally, this paper has further proved the rationality of this evaluation model for atmospheric environment sustainability by comparing the results with those of the entropy weight method alone and those of the rough set method alone. The results show that the sustainability level of the atmospheric environment in Northeast China provinces has first improved, and then worsened, with the atmospheric environment sustainability level reaching the highest level of 0.9275 in 2014, while dropping to the lowest level of 0.6027 in 2017. Therefore, future efforts should focus on reducing the pressure layer and expanding the response layer. Based on analysis of the above evaluation results, this paper has further offered recommendations and solutions for the improvement of atmospheric environment sustainability in the three provinces of Northeast China.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 877 ◽  
Author(s):  
Yi Cui ◽  
Shangming Jiang ◽  
Juliang Jin ◽  
Ping Feng ◽  
Shaowei Ning

To provide a scientific reference for formulating an effective soybean irrigation schedule in the Huaibei Plain, potted water deficit experiments with nine alternative irrigation schemes during the 2015 and 2016 seasons were conducted. An irrigation scheme decision-making index system was established from the aspects of crop water consumption, crop growth process and crop water use efficiency. Moreover, a grey entropy weight method and a grey relation–projection pursuit model were proposed to calculate the weight of each decision-making index. Then, nine alternative schemes were sorted according to the comprehensive grey relation degree of each scheme in the two seasons. The results showed that, when using the entropy weight method or projection pursuit model to determine index weight, it was more direct and effective to obtain the corresponding entropy value or projection eigenvalue according to the sequence of the actual study object. The decision-making results from the perspective of actual soybean growth responses at each stage for various irrigation schemes were mostly consistent in 2015 and 2016. Specifically, for an integrated target of lower water consumption and stable biomass yields, the scheme with moderate-deficit irrigation at the soybean branching stage or seedling stage and adequate irrigation at the flowering-podding and seed filling stages is relatively optimal.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260985
Author(s):  
Haijuan Yan ◽  
Xiaofei Hu ◽  
Dawei Wu ◽  
Jianing Zhang

Green development is an effective way to achieve economic growth and social development in a harmonious, sustainable, and efficient manner. Although the Yangtze River Economic Belt (YREB) plays an important strategic role in China, our understanding of its spatiotemporal characteristics, as well as the multiple factors affecting its green development level (GDL), remains limited. This study used the entropy weight method (EWM) to analyze the temporal evolution and spatial differentiation characteristics of the GDL in the YREB from 2011 to 2019. Further, fuzzy-set qualitative comparative analysis (fsQCA) was used to analyze the influence path of GDL. The results showed that the GDL of the YREB increased from 2015 to 2019, but the overall level was still not high, with high GDL mainly concentrated in the lower reaches. The GDL model changed from being environmentally driven and government supported in 2011 to being environmentally and economically driven since 2014. The core conditions for high GDL changed from economic development level (EDL) to scientific technological innovation level (STIL) and environmental regulation (ER). The path for improving GDL is as follows: In regions with high EDL, effective ER, moderate openness level (OL), and high STIL are the basis, supplemented by a reasonable urbanization scale (US). In areas with low EDL, reasonable industrial structure (IS) and STIL are the core conditions for development; further, EDL should be improved and effective ER and OL implemented. Alternatively, without considering changes to EDL, improvement can be achieved through reasonable OL and US or effective ER. This study provides a new method for exploring the path of GDL and a reference for governments to effectively adjust green development policies.


2020 ◽  
Vol 213 ◽  
pp. 02036
Author(s):  
Nan Xu ◽  
Zihao Zhao ◽  
Bo Zhou ◽  
Ningning Shi ◽  
Yongli Wang ◽  
...  

The smart energy system is the new direction of the current energy development. It plays a vital role in the low-carbon development of my country’s energy industry and in promoting the transformation and upgrading of the energy sector. For the construction and long-term development of smart energy systems, this paper constructs a comprehensive benefit evaluation index system for smart energy systems that can cover all aspects based on the economic, environmental protection, and reliability of energy regulation and other target benefits, and proposes a system based on AHP -Improved evaluation method of entropy weight method, aiming at the hierarchical structure of smart energy evaluation system, adopts analytic hierarchy process and improved entropy weight method to combine subjective weight and objective weight, and scientifically, reasonably and objectively the construction level of smart energy system evaluation of.


2019 ◽  
Vol 11 (19) ◽  
pp. 5313
Author(s):  
Sipan Li ◽  
Qunxi Gong ◽  
Shaolei Yang

As a large agricultural nation, China attaches great importance to agricultural development, as sustainable, regional agricultural development affects the sustainable development of China. Taking Chengdu, Sichuan Province as an example, this paper selected indicators and data from the past 15 years from the Chengdu Statistical Yearbook and applied the dissipative structure theory to establish an evaluation system for sustainable, regional agricultural development based on five main factors including economy, society, environment, education, and population. The entropy weight method was used to empower each indicator, and the changes in Chengdu’s sustainable agricultural development in the past 15 years were calculated. It was found that Chengdu’s sustainable agricultural development has been annually increasing, among which, economic and education subsystems had the greatest support for sustainable agricultural development. From 2003 to 2017, the entropy change of the total agricultural sustainable development system in Chengdu was negative, and the total entropy of the system gradually decreased. The sustainable agricultural development system in Chengdu has been developing towards a more orderly dynamic equilibrium state.


Sign in / Sign up

Export Citation Format

Share Document