scholarly journals Design of Lining Structure of Horizontal Swirl Spillway Tunnel

Author(s):  
Heng Zhou ◽  
Ruijiao Xing ◽  
Shengjie Di ◽  
Peng Huang
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chong Jiang ◽  
Han-song Xie ◽  
Jia-li He ◽  
Wen-yan Wu ◽  
Zhi-chao Zhang

An analytical solution for the seepage field in water-filled karst tunnel is derived based on the inversion of complex function and groundwater hydraulics theory. The solution considers the distance between the tunnel and the cavern, the size of the cavern, and the properties of the lining structure, such as the permeability coefficient as well as the radius of the grouting ring. This paper also performed numerical simulations for two cases: the application of gravity and the absence of gravity. The numerical solution was obtained to verify the analytical solution, and a good agreement was found. Then, the effect of parameters is discussed in detail, including the distance between the tunnel and the cavern, the radius of the cavern, the grouting ring, and the initial support. The results show that when the radius of the cavern is constant, the pressure head and seepage flow decrease as the distance between the tunnel and the cavern increases. When the distance is constant, the pressure head and seepage flow increase with the increase of the radius of the cavern. In addition, the pressure head and the seepage flow decrease with the increase of the thickness of the grouting ring and decrease with the decrease of the permeability coefficient. As the thickness of the initial support increases, the pressure head gradually increases and the percolation decreases. Furthermore, due to the great influence of the grouting ring and initial support on the pressure head and seepage flow, the thickness and permeability coefficient of the grouting ring and initial support should be taken into account carefully during construction.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Desen Kong ◽  
Yu Xu ◽  
Cheng Song

According to the advantages of high tensile resistance and high shear strength of composite steel plate, a new antiexplosion protection method of composite steel plate lining structure is put forward. The numerical model of explosion impact of subway tunnel with composite steel plate lining structure was established by dynamic analysis software. The transient dynamic response of lining structure with the composite steel plate was simulated when explosion occurred. The research results show that the influence of explosive quantity on each point of composite steel plate lining structure is different and the change of acceleration near the centre of the detonation source is generally greater than the multiple of the increase of explosive quantity. The increase of velocity and displacement is basically consistent with the quantity of explosive. The influence of axial stress on the lining structure is the least, and the influence of the lining structure is greater in the y-direction than in the x-direction. The research results can provide the plan and basis for the emergency response of the subway tunnel.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Jun-wei Zhang ◽  
Yi-chong Zhang ◽  
Lei Li ◽  
Bing-feng Liu ◽  
Zhi-rong Mei

Frost damage in permafrost tunnels is very common, and this can have a negative influence on traffic. The most serious frost damage typically occurs at a certain length from the tunnel opening. Thus the antifreeze measures of the lining structure in this area need to be strengthened. In this study, the antifreeze disease fortification length for permafrost tunnels is determined from heat transfer and mathematical physics equations by the theoretical analysis method. The temperature distribution characteristics of the lining along the tunnel axis under the influence of the tunnel depth, the tunnel radius, the wind velocity at the tunnel opening, and the thermal conductivity of the insulation layer are analysed. The results show that the longitudinal temperature characteristics in the tunnel axis are influenced by many factors. The proposed antifreeze disease length of the permafrost tunnel was found to be approximately 31 times of the tunnel diameter, which agrees with the results of the numerical simulation. It verifies the rationality of the theoretical calculation. This value, 31 times of the tunnel diameter, can be used as a reference for the design of the tunnel antifreeze disease fortification length.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zude Ding ◽  
Mingrong Liao ◽  
Nanrun Xiao ◽  
Xiaoqin Li

The mechanical properties of high-toughness engineering cementitious composites (ECC) were tested, and a damage constitutive model of the materials was constructed. A new aseismic composite structure was then built on the basis of this model by combining aseismic joints, damping layers, traditional reinforced concrete linings, and ECC linings. A series of 3D dynamic-response numerical models considering the composite structure-surrounding rock-fault interaction were established to explore the seismic response characteristics and aseismic performance of the composite structures. The adaptability of the structures to the seismic intensity and direction was also discussed. Results showed that the ECC material displays excellent tensile and compressive toughness, with respective peak tensile and compressive strains of approximately 300- and 3-fold greater than those of ordinary concrete at the same strength grade. The seismic response law of the new composite lining structure was similar to that of the conventional composite structure. The lining in the fault zone and adjacent area showed obvious acceleration amplification responses, and the stress and displacement responses were fairly large. The lining in the fault zone was the weak part of the composite structures. Compared with the conventional aseismic composite structure, the new composite lining structure effectively reduced the acceleration amplification and displacement responses in the fault area. The damage degree of the new composite structure was notably reduced and the damage area was smaller compared with those of the conventional composite structure; these findings demonstrate that the former shows better aseismic effects than the latter. The intensity and direction of seismic waves influenced the damage of the composite structures to some extent, and the applicability of the new composite structure to lateral seismic waves is significantly better than that to axial waves. More importantly, under the action of different seismic intensities and directions, the damage degree and distribution area of the new composite structure were significantly smaller than those of the conventional composite lining structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guoqing Liu ◽  
Yanhong Zhang ◽  
Ming Xiao

In order to explore the influence of internal water on the seismic response of hydraulic tunnel, the combined mechanical analysis models of multimaterial including surrounding rock, lining structure, and internal water are built. Based on the explicit central difference method, the dynamic finite element analysis methods for rock, lining, and water are discussed, respectively. The dynamic contact force method is used to simulate the rock-lining contact interaction, and the arbitrary Lagrange-Euler (ALE) method is used to simulate the lining-water coupling interaction. Then a numerical simulation analysis method for combined seismic response of rock-lining-water system in hydraulic tunnel is proposed, and the detailed solving steps are given. This method is used to study the seismic stability characteristics of the water diversion tunnel in a hydropower station, and the displacement, stress, and damage failure characteristics of the lining structure under the conditions of no water, static water, and dynamic water are comparatively analyzed. The results show that the hydrostatic pressure restricts the seismic response of the lining, while the hydrodynamic pressure exacerbates its seismic response and leads to damage, separation, and slip failure appearing on the haunch, which can provide a scientific reference for the seismic design of hydraulic tunnel with high water head and large diameter.


2012 ◽  
Vol 226-228 ◽  
pp. 13-16
Author(s):  
Xin Wang ◽  
Shao Ze Luo

In order to study the flow-induced vibration of the spillway tunnel working gate of one reservoir, hydraulic model test with scale 1:20 was conducted to obtain the dynamic pressure characteristics on the working gate. Experiment modal analysis method was employed to identify the structure dynamic characteristics through the 1:10 working gate mode test. The 3D FEM model of the gate was built to simulate the vibration response of the structure. The research showed the low order modal frequencies of the working gate were not fully breaking away from the high energy zone of the dynamic water, which would induce severe vibration. The vibration response of the gate became the biggest when it was operating at 0.5 partial opening.


Sign in / Sign up

Export Citation Format

Share Document