scholarly journals Numerical simulation of gas wells in different types of carbonate reservoirs

2021 ◽  
Vol 675 (1) ◽  
pp. 012206
Author(s):  
Jiaxin Dong ◽  
Wen Shi ◽  
Mengya Xu
Author(s):  
Sidclei Conceição ◽  
Marcelo Seidel ◽  
Paulo Roberto Maciel Lyra ◽  
DARLAN KARLO ELISIÁRIO DE CARVALHO

1983 ◽  
Vol 29 (101) ◽  
pp. 70-77 ◽  
Author(s):  
J. F. Nye

AbstractIsotropic points are structurally stable features of any complicated field of stress or strain-rate, and therefore will almost always be present on the surface of a glacier. A given isotropic point for strain-rate will belong to one of six different classes, depending on the pattern (lemon, star, or monstar) of principal directions and the contours (ellipses or hyperbolas) of constant principal strain-rate values in its neighbourhood. The central isotropic point on a glacier should theoretically have a monstar pattern, but the contours around it may sometimes be elliptic and sometimes hyperbolic. Nearby, but not coincident with it there will be an isotropic point for stress. This will also have a monstar pattern but, in contrast to the strain-rate point, the contours around it must be hyperbolic. Published examples are consistent with these conclusions. In addition to isotropic points for strain-rate a glacier surface will contain isolated points of pure shear; these also can be classified into six different types. Stable features of this kind give information about the essential structure of a tensor field and form useful points of comparison between observation and numerical simulation.


2014 ◽  
Vol 24 (10) ◽  
pp. 1450124 ◽  
Author(s):  
Karama Koubaâ ◽  
Moez Feki

In addition to border collision bifurcation, the time delay controlled two-cell DC/DC buck converter is shown to exhibit a chaotic behavior as well. The time delay controller adds new design parameters to the system and therefore the variation of a parameter may lead to different types of bifurcation. In this work, we present a thorough analysis of different scenarios leading to bifurcation and chaos. We show that the time delay controlled two-cell DC/DC buck converter may also exhibit a Neimark–Sacker bifurcation which for some parameter set may lead to a 2D torus that may then break yielding a chaotic behavior. Besides, the saturation of the controller can also lead to the coexistence of a stable focus and a chaotic attractor. The results are presented using numerical simulation of a discrete map of the two-cell DC/DC buck converter obtained by expressing successive crossings of Poincaré section in terms of each other.


2019 ◽  
Vol 282 ◽  
pp. 02050
Author(s):  
Michael A. Lacasse ◽  
Nathan Van Den Bossche ◽  
Stephanie Van Linden ◽  
Travis V. Moore

There is an increase in the use of hygrothermal models to complete the performance evaluation of walls assemblies, either in respect to design of new assembles or the retrofit of existing wall assemblies. To this end there are guides available in which is provided information on moisture loads to wall assemblies. This includes, for example, Criteria for Moisture-Control Design Analysis in Buildings given in ASHRAE 160, Assessment of moisture transfer by numerical simulation provided in EN 15026, and NRC’s “Guidelines for Design for Durability of the Building Envelope”. The designer of a new assembly or evaluator of an existing wall is tasked with having to determine what moisture loads to apply to the wall and where to apply this load within the assembly. Typically there is little or no information that is readily available regarding moisture loads to walls and thus the suggested hourly moisture load, as given in ASHRAE 160, is 1% by weight of the total driving rain load to the wall (i.e. kg/m2-hr). In this paper, a brief compendium of water entry test results derived from laboratory tests of various types of wall assemblies is provided from which estimates of moisture loads to different types of wall can be developed. Water entry test results are given of wood frame walls typically used in housing, but also metal-glass curtain walls and other commercial wall assemblies, where possible, in terms of driving loads to the wall.


2013 ◽  
Vol 438-439 ◽  
pp. 1098-1103
Author(s):  
Chun Zi Nan ◽  
Ji Ming Ma ◽  
Luo Zhao

To enhance the exhaust efficiency during ventilation, three types of air duct outlets were imported. According to the characteristics of velocity distribution simulated by numerical method, the flow field is divided into the mixing zone and the exhaust zone. The gradual contracted air duct outlet can enhance the mixing effect between fresh air and smoke. In the exhaust zone, however, the flow velocity on the upper section of the tunnel is weakened, which is unfavorable for smoke exhaust. Gradual expanded air duct outlet, on the contrary, may weaken the concentration effect of the airflow. The flow velocity on the upper section of the tunnel is increased in the exhaust zone, thus the flow field is more homogenized, which is in favor of smoke exhaust.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Chunyan Qi ◽  
Yun Liu ◽  
Fengjuan Dong ◽  
Xixiang Liu ◽  
Xing Yang ◽  
...  

The carbonate reservoirs in the middle Sichuan area have undergone complicated tectonics, resulting in various types of reservoir space, large secondary changes, and multiple complexities. Taking the tight carbonate gas reservoir of the Deng-4 member in this area as an example, based on casting thin sections, scanning electron microscopy, and high-pressure mercury injection experiments, the reservoir space and microstructural characteristics of the micropore throats were studied, and the influence of the microscale heterogeneity in different types of reservoirs on the seepage capacity was analyzed by applying fractal theory. The results showed that the reservoir space in the tight carbonate rock of the Deng-4 member in the study area could be divided into 3 types: pore-hole-fracture, pore-hole, and pore types. The distribution characteristics of the pore throat diameter were multimode wide type, double-mode high and low asymmetrical type, and single-mode concentrated type. The fractal dimension and seepage capability of the pore throat increased successively in sizes from less than 0.1 μm to 0.1~1.0 μm and greater than 1.0 μm. On the one hand, the development of karst caves and fractures controlled the percolation ability of tight carbonate reservoirs; on the other hand, it enhanced the heterogeneity of the micropore throat structure. However, the development degree of dissolved pores and microfractures has a weak contribution to the connectivity and seepage capacity of the reservoir space. Acidification, fracturing, and other measures can be adopted to enhance the connectivity between pores to improve the productivity of the gas reservoir. This study provides a scientific basis for the efficient exploration and development of tight carbonate reservoirs.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Mohamed Mahmoud

The well clean-up process involves the removal of impermeable filter cake from the formation face. This process is essential to allow the formation fluids to flow from the reservoir to the wellbore. Different types of drilling fluids such as oil- and water-based drilling fluids are used to drill oil and gas wells. These drilling fluids are weighted with different weighting materials such as bentonite, calcium carbonate, and barite. The filter cake that forms on the formation face consists mainly of the drilling fluid weighting materials (around 90%), and the rest is other additives such as polymers or oil in the case of oil-base drilling fluids. The process of filter cake removal is very complicated because it involves more than one stage due to the compatibility issues of the fluids used to remove the filter cake. Different formulations were used to remove different types of filter cake, but the problem with these methods is the removal efficiency or the compatibility. In this paper, a new method was developed to remove different types of filter cakes and to clean-up oil and gas wells after drilling operations. Thermochemical fluids that consist of two inert salts when mixed together will generate very high pressure and high temperature in addition to hot water and hot nitrogen. These fluids are sodium nitrate and ammonium chloride. The filter cake was formed using barite and calcite water- and oil-based drilling fluids at high pressure and high temperature. The removal process started by injecting 500 ml of the two salts and left for different time periods from 6 to 24 h. The results of this study showed that the newly developed method of thermochemical removed the filter cake after 6 h with a removal efficiency of 89 wt% for the barite filter cake in the water-based drilling fluid. The mechanisms of removal using the combined solution of thermochemical fluid and ethylenediamine tetra-acetic acid (EDTA) chelating agent were explained by the generation of a strong pressure pulse that disturbed the filter cake and the generation of the high temperature that enhanced the barite dissolution and polymer degradation. This solution for filter cake removal works for reservoir temperatures greater than 100 °C.


Sign in / Sign up

Export Citation Format

Share Document