scholarly journals Heat transfer phenomenon and characteristics study of C-shaped tube with nucleate boiling in water tank

2021 ◽  
Vol 680 (1) ◽  
pp. 012088
Author(s):  
Xiangyu Meng ◽  
Yanbin Liu ◽  
Xuesheng Wang ◽  
Jiaming Cao
Author(s):  
Kamran Nazir ◽  
Naveed Durrani ◽  
Imran Akhtar ◽  
M. Saif Ullah Khalid

Due to high energy demands of data centers and the energy crisis throughout the world, efficient heat transfer in a data center is an active research area. Until now major emphasis lies upon study of air flow rate and temperature profiles for different rack configurations and tile layouts. In current work, we consider different hot aisle (HA) and cold aisle (CA) configurations to study heat transfer phenomenon inside a data center. In raised floor data centers when rows of racks are parallel to each other, in a conventional cooling system, there are equal number of hot and cold aisles for odd number of rows of racks. For even number of rows of racks, whatever configuration of hot/cold aisles is adopted, number of cold aisles is either one greater or one less than number of hot aisles i.e. two cases are possible case A: n(CA) = n(HA) + 1 and case B: n(CA) = n(HA) − 1 where n(CA), n(HA) denotes number of cold and hot aisles respectively. We perform numerical simulations for two (case1) and four (case 2) racks data center. The assumption of constant pressure below plenum reduces the problem domain to above plenum area only. In order to see which configuration provides higher heat transfer across servers, we measure heat transfer across servers on the basis of temperature differences across racks, and in order to validate them, we find mass flow rates on rack outlet. On the basis of results obtained, we conclude that for even numbered rows of rack data center, using more cold aisles than hot aisles provide higher heat transfer across servers. These results provide guidance on the design and layout of a data center.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qiming Men ◽  
Xuesheng Wang ◽  
Xiang Zhou ◽  
Xiangyu Meng

Aiming at the heat transfer calculation of the Passive Residual Heat Removal Heat Exchanger (PRHR HX), experiments on the heat transfer of C-shaped tube immerged in a water tank were performed. Comparisons of different correlation in literatures with the experimental data were carried out. It can be concluded that the Dittus-Boelter correlation provides a best-estimate fit with the experimental results. The average error is about 0.35%. For the tube outside, the McAdams correlations for both horizontal and vertical regions are best-estimated. The average errors are about 0.55% for horizontal region and about 3.28% for vertical region. The tank mixing characteristics were also investigated in present work. It can be concluded that the tank fluid rose gradually which leads to a thermal stratification phenomenon.


Author(s):  
Saurish Das ◽  
Hemant Punekar

In modern cooling systems the requirement of higher performance demands highest possible heat transfer rates, which can be achieved by controlled nucleate boiling. Boiling based cooling systems are gaining attention in several engineering applications as a potential replacement of conventional single-phase cooling system. Although the controlled nucleate boiling enhances the heat transfer, uncontrolled boiling may lead to Dry Out situation, adversely affecting the cooling performance and may also cause mechanical damage due to high thermal stresses. Designing boiling based cooling systems requires a modeling approach based on detailed fundamental understanding of this complex two-phase heat and mass transfer phenomenon. Such models can help analyze different cooling systems, detect potential design flaws and carry out design optimization. In the present work a new semi-mechanistic wall boiling model is developed within commercial CFD solver ANSYS FLUENT. A phase change mechanism and wall heat transfer augmentation due to nucleate boiling are implemented in mixture multiphase flow framework. The phase change phenomenon is modeled using mechanistic evaporation-condensation model. Enhancement of wall heat transfer due to nucleate boiling is captured using 1D empirical correlation, modified for 3D CFD environment. A new method is proposed to calculate the local suppression of nucleate boiling based on the flow velocity, and hence this model can be applied to any complex shaped coolant passage. For different wall superheat, the wall heat fluxes predicted by the present model are validated against experimental data, in which 50-50 volume mixture of aqueous ethylene glycol (a typical anti-freeze coolant mixture) is used as working fluid. The validation study is performed in ducts of different sizes and shapes with different inlet velocities, inlet sub-cooling and operating pressures. The results are in good agreement with the experiments. This model is applied to a typical automobile Exhaust Gas Recirculation (EGR) system to study boiling heat transfer phenomenon and the results are presented.


2020 ◽  
Author(s):  
Shen Ren ◽  
Zhiquan Shu ◽  
Jiaji Pan ◽  
Ji Peng ◽  
Junlan Wang ◽  
...  

Applications of stem cells have been playing significant roles in scientific and clinical settings in the last few decades. The foundation of these approaches is successful cryopreservation of stem cells for future use. However, so far we can only cryopreserve stem cell suspension of small volumes in the order of 1 mL mostly due to the lack of an effective rewarming technique. Rapid and uniform rewarming has been approved to be beneficial, and sometimes, indispensable for the survival of cryopreserved stem cells, inhibiting ice recrystallization or devitrification. Unfortunately, the conventional water bath thawing method failed in providing the rapid and uniform rewarming. The conversion of electromagnetic (EM) energy into heat provides a possible solution to this problem. This chapter will focus on (1) analysis of the combined EM and heat transfer phenomenon in the rewarming of a biospecimen, (2) numerical investigation of the rewarming system, (3) practical setup of an EM resonance system, and (4) test of heating performance with large volume of cells.


Sign in / Sign up

Export Citation Format

Share Document