scholarly journals Genetic variation of COI gene of Hippa admirabilis in Northern Sulawesi

2021 ◽  
Vol 744 (1) ◽  
pp. 012060
Author(s):  
V W Putri ◽  
F Fahri ◽  
Y Wardiatno ◽  
A Farajallah
Keyword(s):  
Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 228
Author(s):  
Gad Degani ◽  
Isana Veksler-Lublinsky ◽  
Ari Meerson

Markers of genetic variation between species are important for both applied and basic research. Here, various genes of the blue gourami (Trichogaster trichopterus, suborder Anabantoidei, a model labyrinth fish), many of them involved in growth and reproduction, are reviewed as markers of genetic variation. The genes encoding the following hormones are described: kisspeptins 1 and 2, gonadotropin-releasing hormones 1, 2, and 3, growth hormone, somatolactin, prolactin, follicle- stimulating hormone and luteinizing hormone, as well as mitochondrial genes encoding cytochrome b and 12S rRNA. Genetic markers in blue gourami, representing the suborder Anabantoidei, differ from those in other bony fishes. The sequence of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene of blue gourami is often used to study the Anabantoidei suborder. Among the genes involved in controlling growth and reproduction, the most suitable genetic markers for distinguishing between species of the Anabantoidei have functions in the hypothalamic–pituitary–somatotropic axis: pituitary adenylate cyclase-activating polypeptide and growth hormone, and the 12S rRNA gene.


Nauplius ◽  
2018 ◽  
Vol 26 (0) ◽  
Author(s):  
Silvia Sayuri Mandai ◽  
Raquel Corrêa Buranelli ◽  
Fernando Luis Mantelatto

2020 ◽  
Author(s):  
Jian Gao ◽  
Hengduan Zhang ◽  
Xiaoxia Guo ◽  
Dan Xing ◽  
YanDe Dong ◽  
...  

Abstract Background:Aedes albopictus is an indigenous primary vector for Dengue and Zika viruses in China. Compared with its insecticide resistance, biology, and vector competence, little is known about its genetic variation, which corresponds to environmental variations. Thus, the present study examines how Ae. albopictus varies among different climatic regions in China and deciphers its potential dispersal patterns.Methods:The genetic variation and population structure of 17 Ae. albopictus populations collected from three climatic regions of China were investigated with 11 microsatellite loci and the mitochondrial COI gene.Results:Of 44 isolated microsatellite markers, 11 pairs were chosen for genotyping analysis and had an average PIC value of 0.713, representing high polymorphism. The number of alleles was high in each population, with the ne value increasing from the temperate region (3.876) to the tropical region (4.144). Twenty-five COI haplotypes were detected, and the highest diversity was observed in the tropical region. The mean Ho value (ca. 0.557) of all the regions was significantly lower than the mean He value (ca. 0.684), with nearly all populations significantly departing from HWE and displaying significant population expansion (p-value < 0.05). Two genetically isolated groups and three haplotype clades were evaluated via STRUCTURE and haplotype phylogenetic analyses, and the tropical populations were significantly isolated from those in the other regions. Most genetic variation in Ae. albopictus was detected within populations and individuals at 31.40% and 63.04%, respectively, via the AMOVA test, and a relatively significant positive correlation was observed among only the temperate populations via IBD analysis (R2 = 0.6614, p = 0.048). Recent dispersions were observed among different Ae. albopictus populations, and four major migration trends with high gene flow (Nm>0.4) were reconstructed between the tropical region and the other two regions. Environmental factors, especially temperature and rainfall, may be the leading causes of genetic diversity in different climatic regions.Conclusions:Continuous dispersion contributes to the similarity of Ae. albopictus populations across different climatic regions, and environmental factors, especially temperature and rainfall, may be the leading causes of genetic variation.


2021 ◽  
Author(s):  
Sanatan Tudu ◽  
SANDEEP KUMAR GUPTA ◽  
Bisnu Prasad Dash

Abstract Horseshoe crab (Tachypleus gigas) is an archaic group of marine creature which plays a vital role in the saline ecosystem. Many researchers emphasize and enhance the knowledge about the horseshoe crab's basic biology, morphology, and ecology, whereas very little information is available about its population genetics. We attempted to develop a baseline database about the ecology, phylogeography, and genetic variation among the horseshoe crab population from Odisha, India. We collected 152 samples of horseshoe crab from the coastal area of the Bay of Bengal. The generated Cytochrome C Oxidase Subunit I gene (COI) sequences of T. gigas were compared with the sequences of T. gigas obtained from GenBank. The GenBank sequences were of two populations from South China and Malaysia. A total of 26 unique haplotypes were observed in three populations of T. gigas. Pairwise F-statistic distance (FST) between South China-India was 0.708; Malaysia-India was 0.608, and South China-Malaysia was 0.136. It indicated that the South China population was closely related to the Malaysian population and the Indian population was appeared to be genetically distinct from the other two populations. It signifies the ecological importance of the Indian population. Furthermore, the migrant per generation (Nm) was 0.16, which indicated a low gene flow among T. gigas populations. The haplotype diversity (Hd) and nucleotide diversity (π) were 0.58826 and 0.00476, respectively. This study would help lay future strategy and conservation of horseshoe crab across the Bay of Bengal.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Van Basten Tambunan ◽  
Ardha Apriyanto ◽  
Walter Ajambang ◽  
Culbertson Enow Etta ◽  
Bandung Sahari ◽  
...  

Abstract. Tambunan VB, Apriyanto A, Ajambang W, Etta CE, Sahari B, Buchori D, Hidayat P. 2020. Molecular identification and population genetic study of Elaeidobius kamerunicus Faust. (Coleoptera: Curculionidae) from Indonesia, Malaysia and Cameroon based on mitochondrial gene. Biodiversitas 21: 3263-3270. Oil palm pollinating weevil Elaeidobius kamerunicus is a very important insect pollinator in oil palm plantation. However, there is still lack of information about molecular identification and population genetic study in this species. The purpose of this study was to explore the effectiveness of oil palm pollinating weevil identification using mitochondrial DNA of COI gene and to assess its genetic variation between different locations and countries. We sequenced the DNA barcode of 36 individuals of this species using the mtDNA Cytochrome Oxidase I (COI) gene to explore their genetic variation, identity and phylogenetic relationship. The COI gene sequences generated from this study were successful in identifying E. kamerunicus. Phylogenetic analysis also revealed 3 well-supported monophyletic haplogroups of E. kamerunicus population. In addition, genetic differentiation analysis revealed that most populations from Indonesia were different from Malaysian and Cameroonian populations indicating that there was a genetic variation between the population samples from these countries. The overall E. kamerunicus used in this study were geographically structured in two regions; outside Indonesia region (Cameroon and Malaysia) and Indonesia region. These results demonstrate the feasibility of using COI gene sequence for molecular identification and population genetic study of E. kamerunicus species.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6013 ◽  
Author(s):  
Sanja Maria Hakala ◽  
Perttu Seppä ◽  
Maria Heikkilä ◽  
Pekka Punttila ◽  
Jouni Sorvari ◽  
...  

Coptoformica Müller, 1923 is a subgenus of Formica Linnaeus, 1758 that consists of c. a dozen species of ants that typically inhabit open grassy habitats and build small nest mounds. The most recent addition to the group is Formica fennica Seifert, 2000. The description was based on morphological characters, but the species status has not been confirmed by molecular methods. In this study, we use thirteen DNA microsatellite markers and a partial mitochondrial COI gene sequence to assess the species status of F. fennica, by comparing the genetic variation among samples identified as F. fennica and six other boreal Formica (Coptoformica) species. Most of the species studied form separate, discontinuous clusters in phylogenetic and spatial analyses with only little intraspecific genetic variation. However, both nuclear and mitochondrial markers fail to separate the species pair F. exsecta Nylander, 1846 and F. fennica despite established morphological differences. The genetic variation within the F. exsecta/fennica group is extensive, but reflects spatial rather than morphological differences. Finnish F. fennica populations studied so far should not be considered a separate species, but merely a morph of F. exsecta.


Sign in / Sign up

Export Citation Format

Share Document