scholarly journals Antioxidative properties and antigenotoxic potential of Gentiana lutea extracts against the heterocyclic aromatic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine, PhIP

2021 ◽  
Vol 854 (1) ◽  
pp. 012018
Author(s):  
S Cvetkovic ◽  
B Nastasijevic ◽  
D Mitic-Culafic ◽  
S Djukanovic ◽  
B Nikolic

Abstract Lipid oxidation that occurs in different types of food can cause alterations in nutritional qualities, flavour, texture and shelf life of foods. Furthermore, high temperature cooking of protein-rich food can lead to formation of heterocyclic aromatic amines capable of compromising the integrity of DNA molecules. To reduce these harmful effects, research has been focused on investigating plants as a source of potential natural food additives and preservatives. Thus, the aim of this study was to estimate antioxidant and antigenotoxic activities of 50% ethanolic-aqueous root and leaf extracts of the medicinal plant, Gentiana lutea. Antioxidative effect was investigated using the DPPH assay, while antigenotoxicity against the mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was determined using Salmonella Typhimurium TA 1535 in the SOS/umuC assay. Leaf extract showed high antioxidative effect with the ability to neutralize up to 87% of free radicals at 400 µg mL-1. Antigenotoxicity testing revealed that both extracts exhibited remarkable genoprotective activity against PhIP-induced DNA damage, with the highest inhibition levels being 70% and 85% for root and leaf extracts, respectively. Results obtained are encouraging and suggest further research of G. lutea extracts as potential food preservatives and additives in improving food quality and human health.

2009 ◽  
pp. 195-209 ◽  
Author(s):  
Marija Skrinjar ◽  
Nevena Nemet

Spices and herbs have been used as food additives since ancient times, as flavouring agents but also as natural food preservatives. A number of spices shows antimicrobial activity against different types of microorganisms. This article gives a literature review of recent investigations considering antimicrobial activity of essential oils widely used spices and herbs, such as garlic, mustard, cinnamon, cumin, clove, bay, thyme, basil, oregano, pepper, ginger, sage, rosemary etc., against most common bacteria and fungi that contaminate food (Listeria spp., Staphylococcus spp., Salmonella spp., Escherichia spp., Pseudomonas spp., Aspergillus spp., Cladosporium spp. and many others). Antimicrobial activity depends on the type of spice or herb, type of food and microorganism, as well as on the chemical composition and content of extracts and essential oils. Summarizing results of different investigations, relative antimicrobial effectiveness can be made, and it shows that cinnamon, cloves and mustrad have very strong antimicrobial potential, cumin, oregano, sage, thyme and rosemary show medium inhibitory effect, and spices such as pepper and ginger have weak inhibitory effect.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1267
Author(s):  
Nagaraj Basavegowda ◽  
Kwang-Hyun Baek

The development of food-borne and infectious diseases has increased globally at an anomalous rate and is combined with emerging social and economic problems. This highlights the need for new and improved antibacterial agents with novel and different mechanisms of action at regular intervals. Some chemical or artificial food additives are considered harmful if they are used beyond their permissible levels. Today, consumers are demanding alternative, green, safer, and natural food additives to increase the shelf life of food. Essential oils (EOs) are concentrated liquid mixtures of volatile compounds with antioxidant and antibacterial properties that can be used as natural, eco-friendly, renewable, and cost-effective additives. The use of combinations of different EOs and their components is a promising strategy to increase the synergistic and additive effects of EOs in foods. In this article, we review the recent literature on EOs concerning the chemical constituents, extraction methods, antioxidant and antibacterial activities, and their mechanisms of action. Additionally, we discuss the synergistic interaction of different EOs and their components, challenges, and future directions of EOs as natural food preservatives, with special emphasis on shelf life extension and applications in the packaging of food products.


2021 ◽  
Author(s):  
Ho-Cheng Wu ◽  
Yih-Fung Chen ◽  
Ming-Jen Cheng ◽  
Ming-Der Wu ◽  
Yen-Lin Chen ◽  
...  

The mold Monascus has been used as the natural food coloring agent and food additives for more than 1,000 years in Asian countries. In Chinese herbology, it was also used...


2019 ◽  
Vol 24 (7) ◽  
pp. 1272-1283
Author(s):  
Yongjuan He ◽  
Jiale Lv ◽  
Endong Wang ◽  
Xuenong Xu

As an important pest, Tetranychus urticae fed on thousands of host plants and showed strong capability in host adaptation. However, hardly any success artificial diet has been developed for it. In this study, we compared adult longevity and reproduction of T. urticae that fed on its natural food (bean leaves) and an artificial diet with leaf extracts added, and tried to investigate the reason why the artificial diet was inefficient through transcriptome analyses. Mean adult longevity and cumulative fecundities of T. urticae was reduced by 53.4% and 93.8%, respectively. Transcriptome analyses showed that 1731 genes were differentially expressed comparing individuals fed with the artificial diet and with their natural food, among which most (77.1%) were down regulated. No significant induced expression of xenobiotic transporters and detoxification enzymes were observed when T. urticae were fed with the artificial diet. In contrast, differentially expressed genes were mainly enriched in digestive related terms, especially in lipid metabolism related pathways, with most genes down regulated. Our results indicated the significance in further investigating lipid demand and metabolism of T. urticae to improve its mass rearing techniques.


2021 ◽  
pp. 131464
Author(s):  
Yu Matsuo ◽  
Kanako Akita ◽  
Honoka Taguchi ◽  
Shuji Fujii ◽  
Yumiko Yoshie-Stark ◽  
...  
Keyword(s):  

Author(s):  
T. K. Kalenik ◽  
E. V. Dobrynina ◽  
V. M. Ostapenko ◽  
Y. Torii ◽  
J. Hiromi

The article presents a study of the process of isolation of natural blue pigment – phycocyanin from the biomass of blue-green algae Spirulina platensis by water extraction, followed using its water solution as a natural food colorant in the production of milk chocolate. Recently, modern food enterprises are pursuing their policy towards expanding the range of products, which is closely related to the increasing needs of the population in food of a new kind. One of the solutions to this problem is the use of food additives of both natural and synthetic origin. Among the similar components widespread found dyes synthetic origin, which have high coverage rates and relatively low cost. However, many of the permitted in our country synthetic food dyes are banned in several developed countries as potentially dangerous to health. Synthetic dyes of red, yellow and green color have many natural analogues – carotenoids, lutein, chlorophyll, etc., except for the blue dye, the analogue of which is only anthocyanins, which are unstable depending on the pH conditions. In this article were identified phycobiliproteins and chlorophyll a in a water extract of spirulina. The mass concentration of phycobiliproteins and chlorophyll a was determined by spectrophotometric method before and after the addition of ammonium sulfate. A comparative analysis of the effect of fractionation (salting out) on the degree of purification of the phycocyanin solution. Presented and described the technological scheme of extraction of phycocyanin which allows to use it in food technologies as an extract or a dry powder. Established the concentration of phycocyanin extract from blue-green algae spirulina to produce milk blue chocolate. Determined organoleptic and hygienic characteristics of the finished product


2021 ◽  
Author(s):  
K Saleem ◽  
Pritha Dey ◽  
Charitha Sumeet ◽  
Mayur Bajaj ◽  
Y Geetika ◽  
...  

AbstractThis study attempts to identify the significant role played by the secondary structure of collagen-derived peptides that are involved in lipid peroxide quenching in food products. Collagen was extracted from the skin of Perch and swim bladder of Rohu at 45-78% efficiency. It was identified as type-I based on a high molecular weight (110kDa) and its ion-exchange elution profile. The collagen samples were enzymatically hydrolyzed and collagen hydrolysate (CH) was extracted with an efficiency of 0.67-0.74g/g of collagen. The CH samples displayed a molecular weight in the range of 8.2-9.7kDa and exhibited a higher abundance of charges resulting in higher solubility. The structural studies revealed that the CH peptides existed in polyproline-II helix and formed a mimic-triple helix in a wide range of pH. In neutral and alkaline pH, the mimic helices joined to form a hierarchical quasi-fibrillar network that was smaller than collagen fibrils but also more dynamic. The CH exhibited >95% degradation in 15h through simulated digestion. The CH were able to decrease peroxide formation by 84.5-98.9% in commercially available cod liver and almond oil and increased the shelf life of soya bean oil by a factor of 5 after 6 months of storage. The addition of CH to cultured cells quenched peroxide ions generated in situ and decreased stressor activity by a factor of 12. The reason behind the high efficacy of CH was deciphered to be the proximal charge stabilization by the quasi-fibrillar network, which allowed efficient peroxide quenching and long-term stability.


Sign in / Sign up

Export Citation Format

Share Document