scholarly journals Antimicrobial effects of spices and herbs essential oils

2009 ◽  
pp. 195-209 ◽  
Author(s):  
Marija Skrinjar ◽  
Nevena Nemet

Spices and herbs have been used as food additives since ancient times, as flavouring agents but also as natural food preservatives. A number of spices shows antimicrobial activity against different types of microorganisms. This article gives a literature review of recent investigations considering antimicrobial activity of essential oils widely used spices and herbs, such as garlic, mustard, cinnamon, cumin, clove, bay, thyme, basil, oregano, pepper, ginger, sage, rosemary etc., against most common bacteria and fungi that contaminate food (Listeria spp., Staphylococcus spp., Salmonella spp., Escherichia spp., Pseudomonas spp., Aspergillus spp., Cladosporium spp. and many others). Antimicrobial activity depends on the type of spice or herb, type of food and microorganism, as well as on the chemical composition and content of extracts and essential oils. Summarizing results of different investigations, relative antimicrobial effectiveness can be made, and it shows that cinnamon, cloves and mustrad have very strong antimicrobial potential, cumin, oregano, sage, thyme and rosemary show medium inhibitory effect, and spices such as pepper and ginger have weak inhibitory effect.

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1267
Author(s):  
Nagaraj Basavegowda ◽  
Kwang-Hyun Baek

The development of food-borne and infectious diseases has increased globally at an anomalous rate and is combined with emerging social and economic problems. This highlights the need for new and improved antibacterial agents with novel and different mechanisms of action at regular intervals. Some chemical or artificial food additives are considered harmful if they are used beyond their permissible levels. Today, consumers are demanding alternative, green, safer, and natural food additives to increase the shelf life of food. Essential oils (EOs) are concentrated liquid mixtures of volatile compounds with antioxidant and antibacterial properties that can be used as natural, eco-friendly, renewable, and cost-effective additives. The use of combinations of different EOs and their components is a promising strategy to increase the synergistic and additive effects of EOs in foods. In this article, we review the recent literature on EOs concerning the chemical constituents, extraction methods, antioxidant and antibacterial activities, and their mechanisms of action. Additionally, we discuss the synergistic interaction of different EOs and their components, challenges, and future directions of EOs as natural food preservatives, with special emphasis on shelf life extension and applications in the packaging of food products.


2019 ◽  
Vol 8 (1) ◽  
pp. 34-37 ◽  
Author(s):  
Saurab Kishore Munshi ◽  
Juel Roy ◽  
Rashed Noor

Cow dung is being used in agriculture as well for the household and religious purposes from the ancient time. Cow dung is known to possess antimicrobial activity and contains a wide variety of microorganisms with variable properties. Therefore, the present study was carried out to assess the microbial diversity including pathogenic ones of the cow dung samples as well as to determine the antimicrobial traits of the samples. In this regard, a total of 8 fresh cow dung samples were tested. All the samples contained a huge load of bacteria and fungi in an average of 108 and 107 cfu/g, respectively. An extended number of pathogenic bacteria were recovered. Among the pathogenic bacteria, Staphylococcus spp. and Bacillus spp. were predominantly found in every sample. The presence of Pseudomonas spp. Escherichia coli, Klebsiella spp. and fecal coliform were exhibited in most of the samples. Salmonella spp. and Vibrio spp. were found in 3 and 5 samples, respectively. The average load of the pathogens was 104 cfu/g. All the samples showed substantial degree of antimicrobial activity against all the pathogens tested. Samples 1, 2, 3 and 4 were effective in inhibiting the growth of all the tested pathogens. The findings of the present study revealed the need for safe application of cow dung in the agricultural field and of further investigation for the antimicrobial potential of the diversified microflora of cow dung offering agricultural, environmental and medical applications. Stamford Journal of Microbiology, Vol.8(1) 2018: 34-37


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Junpeng Li ◽  
Shuping Hu ◽  
Wei Jian ◽  
Chengjian Xie ◽  
Xingyong Yang

AbstractAntimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3170
Author(s):  
Wafaa M. Elkady ◽  
Mariam H. Gonaid ◽  
Miriam F. Yousif ◽  
Mahmoud El-Sayed ◽  
Hind A. N. Omar

Active components from natural sources are the current focus in most pharmacological research to provide new therapeutic agents for clinical use. Essential oils from the Pinus species have been traditionally used in medicine. This study aimed to investigate the chemical profile of two Pinus species, Pinus halepensis L. and Pinus pinea Mill, from different altitudes in Libya and study the effect of environmental conditions on the biological activities of essential oils. A clevenger apparatus was used to prepare the essential oils by hydrodistillation. Analyses were done using GC/MS. Anthelmintic and antimicrobial activities were tested against the earthworm Allolobophora caliginosa, gram-positive bacteria, gram-negative bacteria, and fungi. Different chemical profiles were observed among all tested essential oils, and terpenes were the most dominant class. All studied essential oils from the Pinus species exhibited a remarkable anthelmintic activity compared to the standard piperazine citrate drug. Pinus halepensis from both altitudes showed broad-spectrum antimicrobial activity against all tested microorganisms, while Pinus pinea was effective against only Escherichia coli. From these findings, one can conclude that there are variations between studied species. The essential oil compositions are affected by environmental factors, which consequently affect the anthelmintic and antimicrobial activity.


Author(s):  
Samina Amin Qurban Ali ◽  
Arif Malik

The increasing rate of drug-repellent pathogens and poisonousness of existing antiseptic compounds has strained attention toward activity of antimicrobial products which are natural. Main purpose of this research was to assess antimicrobial activity of seeds and leaves of Coriandrum sativum’s essential oil, antioxidant, antimicrobial activity and chemical composition of Coriandrum sativum’s ethanol extracts and essential oils. Numerous approaches were used in reviewing the antioxidant activity such as, p-anisidine test – malonaldhyde, DPPH and peroxide value. Antimicrobial activity of the extracts towards six microbial strains; two bacterial strains (Salmonella typhi and Staphylococcus aureus), one yeast (Candida tropicals) and three fungal strains (Aspergillus flavus, Mucor sp and Emericella nidulans) was assessed by determination of inhibition zone and count of bacteria, yeast and spares of fungus. The antimicrobial mechanisms found in these essential oils have been explained on the basis of their content in natural compounds such as carvacrol, thymol, p-cymene and c-terpinene, among others. Although these two essential oils have received much attention, scientists working in the fields of biomedicine and food science are paying increasing attention to a wider variety of aromatic natural oils in an effort to identify original and natural applications for the inhibition of microbial pathogens. In conclusion, utilization of coriander or their components as food additives will increase the antioxidant and the antimicrobial potential of the food which prevent food deterioration and improve the shelf-life of food beside its nutritional value. The results revealed that the leaves extracts have high levels of phenolics than the seeds extract. Concerning antioxidant activity, significant decreases (p>0.001) were observed in peroxide, P- anisidine and TBA values as compared to control oil. On the other hand, scavenging activity % of the four extracts on DPPH radical were higher than that of butylated hydroxyl toluene (BHT) especially with high concentration (1000 μg/ ml). Regarding antimicrobial activity, the results showed that the extract of coriander seeds has the highest reduction percent in growth of all the examined microorganisms. The result also revealed that Mucor sp was resistant to the action of parsley extracts while Aspergillus flavus has the highest resistance against coriander extracts.


Author(s):  
PAULA ALEJANDRA GIRALDO VILLAMIL ◽  
ANDRÉS CAMILO ANDRADE BURBANO ◽  
LUIS POMBO OSPINA ◽  
JANETH ARIAS PALACIOS ◽  
ÓSCAR EDUARDO RODRÍGUEZ AGUIRRE

Objective: The objective of the study was to determine the antimicrobial activity of leaf and flower extract in Chromolaena scabra (L. f.) R.M. King and H. Rob., against selected strains of bacteria and fungi. Methods: The agar diffusion method with plate perforation was developed; the microorganisms used were strains of Staphylococcus aureus and Escherichia coli, Aspergillus niger, and Penicillium digitatum. Rifampicin was used as a positive control. The evaluation was performed by measuring the diameter of the growth inhibition zones around the holes. The inhibitory effect of the plant extracts was obtained by its efficiency compared to the positive control. A comparison with fluconazole and ketoconazole was performed to determine how much of the extract is required to cause inhibition of fungal growth from the standard. Results: IC50 was determined by relating the ln of mass evaluated with respect to the square of the inhibition halo; ethanolic extracts of leaves and flowers of petroleum ether with IC50 values of 85.8 mg/ml and 50.3 mg/ml showed the highest inhibitory effect against S. aureus; the extract of petroleum ether and ethanol from leaves with IC50 of 64 mg/ml and 60 mg/ml, respectively. They were effective with A. niger. Leaf petroleum ether extract showed the best relative antifungal activity against A. niger with respect to fluconazole equivalent to 459.51 when fluconazole is 1.0. Conclusion: The extracts with high potential to inhibit the growth of microorganisms were determined to be ether flowers of petroleum and ethanol leaf extracts.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


Sign in / Sign up

Export Citation Format

Share Document