scholarly journals Shading and daylighting strategies in classrooms: a comparative study in the four climate zones in Greece using Daylight Factor values

2021 ◽  
Vol 899 (1) ◽  
pp. 012036
Author(s):  
G I Nikolaou ◽  
A K Meresi

Abstract The present work focuses to the efficient use of daylight in school buildings, which has been proved that is able to create a pleasant atmosphere, increase student productivity and comfort and also contribute to energy savings if combined with a daylight-responsive control system. The architectural-bioclimatic design contributes to the creation of technical solutions that provide daylight in existing classrooms, taking into account the climatic conditions and the needs of users. The purpose is to investigate the most prevalent shading and light redirection systems in a typical Greek classroom, in every climatic zone of Greece and come up with the most efficient ones. Research takes into consideration the distribution of daylight on working level and the total heating energy consumption throughout the school year, ensuring conditions of visual comfort. After evaluating and comparing the data, the outcome of this research demonstrates the most efficient shading system for each climatic zone, in order to achieve visual comfort and energy savings.

2010 ◽  
Vol 16 (4) ◽  
pp. 567-576 ◽  
Author(s):  
Jorge S. Carlos ◽  
Helena Corvacho

A study on thermal retrofit of Portuguese elementary school buildings is presented. The type of school under analysis is one adopted by a large construction campaign that began in the 1940's. This building stock has a very poor thermal performance and their retrofit was evaluated starting with a case study of a school in the central region of Portugal, where some experimental measures were performed and a calculation method was applied for the heating energy consumption estimation. A solution for the thermal retrofit of the school building external envelope was optimized and the effect on heating energy consumption was evaluated, using ECOTECT, resulting in a reduction of 52% of heating energy needs. The national impact of the thermal retrofit of the whole building stock was characterised in terms of energy savings. Finally, the pre‐heating of the ventilation air was also tested as a complementary measure and its effect evaluated. The solution tested may provide up to 1000 kWh/year of extra heat gains by pre‐heating the ventilation air. It must be underlined though that the performance of these systems is dependent on the thermal properties of their components so higher reductions can be achieved with the improvement of these properties. Santrauka Straipsnyje pateikiami Portugalijos pradines mokyklos šiluminio atnaujinimo tyrimai. Analizuojamos mokyklos tipas yra vienas iš taikytu po 1940 metu prasidejusioje plačioje statybos kampanijoje. Šios pastatu grupes šilumines charakteristikos yra labai prastos. Ju atnaujinimo vertinimas buvo pradetas nuo centrineje Portugalijoje esančios mokyklos, kurioje buvo igyvendintos kai kurios eksperimentines priemones, ir energijos sanaudoms nustatyti pritaikytas skaičiavimo metodas. Pastato išoriniu atitvaru šiluminio atnaujinimo sprendimas buvo optimizuotas ir jo itaka šilumines energijos sanaudoms nustatyta naudojant ECOTECT. Šilumines energijos poreikis sumažejo 52 %. Iš viso pastatu fondo šiluminio atnaujinimo itaka nacionaliniu mastu vertinta sutaupytos energijos kiekiu. Pabaigoje kaip papildoma priemone buvo išbandytas pirminis vedinamo oro pašildymas, nustatytas jo naudingumas. Išbandytasis pirminis vedinamo oro pašildymas gali suteikti iki 1000 kWh/metus papildomo išsiskiriančio šilumos kiekio. Pabrežtina, kad nors šiu sistemu veikimo charakteristikos priklauso nuo ju komponentu šiluminiu savybiu, gerinant šias savybes galima daugiau sumažinti energijos sanaudu.


2017 ◽  
Vol 42 (3) ◽  
pp. 220-238 ◽  
Author(s):  
Lakshya Sharma ◽  
K Kishan Lal ◽  
Dibakar Rakshit

Residential and commercial buildings together account for one-third of world’s final energy consumption, thus making energy management in buildings of considerable significance. Passive design concept that depends on climate and location can be used as an effective and economical method to reduce the energy consumption in buildings. Seven cities in India, each representative of different geographic and climatic conditions, were selected for analysis. This article studies how the peak cooling and heating load are affected by varying some of the passive design parameters for each of the seven cities. The parameters varied are wall insulation thickness, roof insulation thickness, overhang depth, window orientation, and window-to-wall ratio. Results show that optimized passive design could reduce the peak cooling and heating loads by about 50%. Shading reduces cooling loads but is found to increase heating loads. In some of the locations, both heating in winter and cooling in summer are needed and designers should adopt appropriate passive measures depending on the location. Also for the same building, evaluation of shading is done in the context of lighting energy savings. An algorithm has been developed to iteratively alter and analyze set of roller blind positions to maintain visual comfort; as a result, the corresponding potential annual energy savings due to lighting were estimated. It was also observed that even after providing visual comfort to the occupants, energy savings only reduced by approximately 1% as compared to the case when visual comfort was overlooked.


2016 ◽  
Vol 50 (4) ◽  
pp. 631-650 ◽  
Author(s):  
N Gentile ◽  
T Goven ◽  
T Laike ◽  
K Sjoberg

Indoor lighting is facing a massive retrofit to LED lighting. Research is needed to assess whether LED-based lighting can promote energy efficiency, boost visual comfort and support biological functions. This field study considered the lighting of four identical classrooms in an upper secondary school in Helsingborg, Sweden. Two classrooms were fitted with state-of-the-art ceiling pendants containing T5 fluorescent tubes and that had a direct/indirect light distribution (the control rooms). The other two classrooms were fitted with an experimental LED indirect lighting system (the experimental rooms). In the classrooms, 72 students aged 17–18 years performed their usual educational activities over a whole academic year. The light environment, electricity consumption, and students’ mood, light perception and saliva cortisol concentration were monitored. The two lighting systems produced only marginal differences. Overall, the experimental rooms were slightly preferred but achieved only small energy savings due to high parasitic losses.


2018 ◽  
Vol 63 (1) ◽  
pp. 57-66
Author(s):  
Balázs Bokor ◽  
Hacer Akhan ◽  
Dogan Eryener ◽  
László Kajtár

Transpired solar collector (TSC) systems are simple solutions for the preheating of ventilation air with solar energy. Their performance is a function of several environmental factors, so the climatic conditions of the location play an important role. In this paper, the effect of different climatic zones on the thermal performance of the TSC is investigated. To exclude other sources of influence, the same reference industrial building is examined in four Turkish locations (Antalya, Istanbul, Ankara and Sivas) representing different climatic conditions. RETScreen simulation is carried out for all four regions to obtain the drop of conventional heating requirement in case absorber azimuth of 0°, 45° and 90°. To illustrate the performance, temperature rise, heating energy savings and annual solar fraction are presented. Generally, it can be stated that a location with cold climate and high solar radiation at the same time benefits most from the use of a TSC system. A mathematical correlation has been found showing the solar fraction's dependence on solar radiation and heating degree days. Finally, simulation results have been compared to a set of measurement data from an industrial building's TSC system near Istanbul.


Author(s):  
Chang-Jun Choi, Ha-Sung Kong

This study used the Pathfinder program to evaluate evacuation safety by assuming evacuation training in high school buildings and changing classroom layout. Analysis of the final evacuation requirements for Scenario 2, which currently has a concentration of classrooms on the third floor of the building, showed that Scenario 2 reduced 29.6 seconds to 173.9 seconds compared to Scenario 1's 203.5 seconds. However, the analysis of Scenario 3, in which 10 classrooms and personnel of three grades were placed equally on the left and right sides of the building, showed that the final evacuation requirements were reduced 3.9 seconds to 170.0 seconds compared to Scenario 2, but there was no significant difference. Scenario 3, which has more the efficiency of school year operation by placing classroom layout on the same floor by grade level than Scenario 2, in which more classrooms and students were placed downstairs. In each scenario, an analysis of the final evacuation requirements showed that the evacuation exit T1 on the left side of the building was 28 seconds or more shorter than T3 on the right side of the building. Therefore, it was analyzed that proper classroom layout and ramp facilities in high school buildings ensure evacuation safety


Author(s):  
Cesar Augusto Real-Ramirez ◽  
Jose Maria Velazquez-Soto ◽  
Rosalba Orduña-Martinez ◽  
Jesus Isidro Gonzalez-Trejo

This paper presents the results of aerodynamical performance research focused on maintaining the thermal comfort and increasing the energy efficiency of a typical social housing unit located in a high-density urban area. Bioclimatic design strategies are used to develop a sustainable and economic technology in existing housing clusters in Mexico City. A full-scale prototype, built on campus facilities, was used to study the flow conditions around the design. All scaled prototypes implement similar criterion. Furthermore, a scaled prototype is evaluated within a low speed wind tunnel installation. Additionally, numerical simulations were performed at transient state based on previous physical measurements and historical local climatic conditions to determine preferable modifications.


Climate ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 26 ◽  
Author(s):  
Giuseppe Rossi ◽  
Paola Iacomussi ◽  
Michele Zinzi

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 593
Author(s):  
Sorin Perju ◽  
Alexandru Aldea

This paper presents the results recorded by upgrading and rehabilitating the pumping stations for an urban water network with a primary goal of diminishing the operation and maintenance costs and a secondary goal of reducing the water losses in the water distribution network. The adopted technical solutions within the structural and functional modifications of the pumping stations have led to both the improvement of hydraulic parameters of the pumping stations and also the improvement of registered energy consumption. The undertaken modifications and transformations within the pumping stations led to significant energy savings and at the same time to important water losses reductions within the distribution network.


Sign in / Sign up

Export Citation Format

Share Document