scholarly journals Biosorption of chromium by dry algae Chlorella kessleri

2021 ◽  
Vol 900 (1) ◽  
pp. 012046
Author(s):  
A Takáčová ◽  
M Bajuszová ◽  
J Kohanová ◽  
A Lux ◽  
P Valent ◽  
...  

Abstract Decontamination of environment according to traditional methods is not only economically inaccessible but also often highly environmentally harmful. It is necessary to apply methods that are environmentally friendly as possible. These methods include bioremediation, which uses organisms able to fight with high concentrations of pollutants to decontaminate the environment. In this study, we observed the biosorption of chromium from the aquatic environment using dried algae Chlorella kessleri. The results of the specific sorption at pH = 4.00 in the chromium model sample had a value of q = 5.9 mg / g, which represented a decrease in the chromium concentration by 74%. The specific sorption in the case of the native chromium sample q after 24 hours reached the highest value (q = 2.74 mg / g) at pH = 4.00. During the experiment, we observed a constant change in the content of photosynthetic pigments in the prepared solutions where it was shown that after 24 h exposure the yield of chlorophyll a was decrease by 95.91% compare to control. In the case of chlorophyll b, the same trend was demonstrated where 91.92% decrease of its content after 24 hours was observed. This type of dried alga has been shown to be a rapid biosorbent, in relatively short time intervals. The results of the study show that in the process of decontamination there was not only the binding of chromium to the cell surface but also its penetration through the cell wall.

Author(s):  
D. James Morré ◽  
Charles E. Bracker ◽  
William J. VanDerWoude

Calcium ions in the concentration range 5-100 mM inhibit auxin-induced cell elongation and wall extensibility of plant stems. Inhibition of wall extensibility requires that the tissue be living; growth inhibition cannot be explained on the basis of cross-linking of carboxyl groups of cell wall uronides by calcium ions. In this study, ultrastructural evidence was sought for an interaction of calcium ions with some component other than the wall at the cell surface of soybean (Glycine max (L.) Merr.) hypocotyls.


2016 ◽  
Vol 136 (12) ◽  
pp. 891-897 ◽  
Author(s):  
Katsuhiro Matsuda ◽  
Kazuhiro Misawa ◽  
Hirotaka Takahashi ◽  
Kenta Furukawa ◽  
Satoshi Uemura

Author(s):  
Elena Yu. Balashova ◽  
◽  
Lika I. Mikeladze ◽  
Elena K. Kozlova ◽  
◽  
...  

2019 ◽  
Vol 19 (4) ◽  
pp. 428-438 ◽  
Author(s):  
Nívea P. de Sá ◽  
Ana P. Pôssa ◽  
Pilar Perez ◽  
Jaqueline M.S. Ferreira ◽  
Nayara C. Fonseca ◽  
...  

<p>Background: The increasing incidence of invasive forms of candidiasis and resistance to antifungal therapy leads us to seek new and more effective antifungal compounds. </P><P> Objective: To investigate the antifungal activity and toxicity as well as to evaluate the potential targets of 2- cyclohexylidenhydrazo-4-phenyl-thiazole (CPT) in Candida albicans. </P><P> Methods: The antifungal activity of CPT against the survival of C. albicans was investigated in Caenorhabditis elegans. Additionally, we determined the effect of CPT on the inhibition of C. albicans adhesion capacity to buccal epithelial cells (BECs), the toxicity of CPT in mammalian cells, and the potential targets of CPT in C. albicans. </P><P> Results: CPT exhibited a minimum inhibitory concentration (MIC) value of 0.4-1.9 µg/mL. Furthermore, CPT at high concentrations (>60 x MIC) showed no or low toxicity in HepG2 cells and <1% haemolysis in human erythrocytes. In addition, CPT decreased the adhesion capacity of yeasts to the BECs and prolonged the survival of C. elegans infected with C. albicans. Analysis of CPT-treated cells showed that their cell wall was thinner than that of untreated cells, especially the glucan layer. We found that there was a significantly lower quantity of 1,3-β-D-glucan present in CPT-treated cells than that in untreated cells. Assays performed on several mutant strains showed that the MIC value of CPT was high for its antifungal activity on yeasts with defective 1,3-β-glucan synthase. </P><P> Conclusion: In conclusion, CPT appears to target the cell wall of C. albicans, exhibits low toxicity in mammalian cells, and prolongs the survival of C. elegans infected with C. albicans.</p>


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1213
Author(s):  
Ahmed Aljanad ◽  
Nadia M. L. Tan ◽  
Vassilios G. Agelidis ◽  
Hussain Shareef

Hourly global solar irradiance (GSR) data are required for sizing, planning, and modeling of solar photovoltaic farms. However, operating and controlling such farms exposed to varying environmental conditions, such as fast passing clouds, necessitates GSR data to be available for very short time intervals. Classical backpropagation neural networks do not perform satisfactorily when predicting parameters within short intervals. This paper proposes a hybrid backpropagation neural networks based on particle swarm optimization. The particle swarm algorithm is used as an optimization algorithm within the backpropagation neural networks to optimize the number of hidden layers and neurons used and its learning rate. The proposed model can be used as a reliable model in predicting changes in the solar irradiance during short time interval in tropical regions such as Malaysia and other regions. Actual global solar irradiance data of 5-s and 1-min intervals, recorded by weather stations, are applied to train and test the proposed algorithm. Moreover, to ensure the adaptability and robustness of the proposed technique, two different cases are evaluated using 1-day and 3-days profiles, for two different time intervals of 1-min and 5-s each. A set of statistical error indices have been introduced to evaluate the performance of the proposed algorithm. From the results obtained, the 3-days profile’s performance evaluation of the BPNN-PSO are 1.7078 of RMSE, 0.7537 of MAE, 0.0292 of MSE, and 31.4348 of MAPE (%), at 5-s time interval, where the obtained results of 1-min interval are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%). The results revealed that proposed model outperformed the standalone backpropagation neural networks method in predicting global solar irradiance values for extremely short-time intervals. In addition to that, the proposed model exhibited high level of predictability compared to other existing models.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 63 ◽  
Author(s):  
Thomas Meunier ◽  
Claire Ménesguen ◽  
Xavier Carton ◽  
Sylvie Le Gentil ◽  
Richard Schopp

The stability properties of a vortex lens are studied in the quasi geostrophic (QG) framework using the generalized stability theory. Optimal perturbations are obtained using a tangent linear QG model and its adjoint. Their fine-scale spatial structures are studied in details. Growth rates of optimal perturbations are shown to be extremely sensitive to the time interval of optimization: The most unstable perturbations are found for time intervals of about 3 days, while the growth rates continuously decrease towards the most unstable normal mode, which is reached after about 170 days. The horizontal structure of the optimal perturbations consists of an intense counter-shear spiralling. It is also extremely sensitive to time interval: for short time intervals, the optimal perturbations are made of a broad spectrum of high azimuthal wave numbers. As the time interval increases, only low azimuthal wave numbers are found. The vertical structures of optimal perturbations exhibit strong layering associated with high vertical wave numbers whatever the time interval. However, the latter parameter plays an important role in the width of the vertical spectrum of the perturbation: short time interval perturbations have a narrow vertical spectrum while long time interval perturbations show a broad range of vertical scales. Optimal perturbations were set as initial perturbations of the vortex lens in a fully non linear QG model. It appears that for short time intervals, the perturbations decay after an initial transient growth, while for longer time intervals, the optimal perturbation keeps on growing, quickly leading to a non-linear regime or exciting lower azimuthal modes, consistent with normal mode instability. Very long time intervals simply behave like the most unstable normal mode. The possible impact of optimal perturbations on layering is also discussed.


2014 ◽  
Vol 889-890 ◽  
pp. 745-748
Author(s):  
Jian Sheng Cao ◽  
Wan Jun Zhang ◽  
Xin Hua Zeng

Automatic monitoring of hydrologic properties such as water velocity at short-time intervals is critical for understanding watershed eco-hydrological processes. This can also be used to study the laws of stream flows and interactions ecological process. The advent of modern electronic technology (and the near-perfection of especially sensor and data collection technologies), has made it possible to use automatic monitoring systems to continuously measure hydrologic properties at short-time intervals. This paper introduces one such paperless flow velocity measuring/recoding system. The system uses a photoelectric sensor that is mainly comprised of photoelectric velocity sensor and pulse recorder. The system uses propellers (with reflective panels and photoemission cells) to transform flow velocities into optical pulse signals. It also uses photosensitive tubes to transform optical pulse signals into electric pulse signals. The electric pulse counts (generated in unit time) are recorded via pulse recorders. This therefore accomplishes automatic monitoring and continuous recording of fluid flow velocity.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1754
Author(s):  
Maria Cristina Collivignarelli ◽  
Marco Carnevale Miino ◽  
Francesca Maria Caccamo ◽  
Marco Baldi ◽  
Alessandro Abbà

To date, the management of high-strength wastewater represents a serious problem. This work aims to evaluate the performance on chemical pollutants and on sludge production of one of the two full-scale thermophilic membrane bioreactors (ThMBRs) currently operational in Italy, based on monitoring data of the last two and a half years. Removal yields on COD, N-NOx, non-ionic and anionic surfactants (TAS and MBAS), increased with the input load up to 81.9%, 97.6%, 94.7%, and 98.4%, respectively. In the period of stability, a very low value of sludge production (0.052 kgVS kgCOD−1) was observed. Oxygen uptake rate (OUR) tests allowed us to exclude the possibility that mesophilic biomass generally exhibited any acute inhibition following contact with the aqueous residues (ARs), except for substrates that presented high concentrations of perfluoro alkyl substances (PFAS), cyanides and chlorides. In one case, nitrifying activity was partially inhibited by high chlorides and PFAS concentration, while in another the substrate determined a positive effect, stimulating the phenomenon of nitrification. Nitrogen uptake rate (NUR) tests highlighted the feasibility of reusing the organic carbon contained in the substrate as a source in denitrification, obtaining a value comparable with that obtained using the reference solution with methanol. Therefore, respirometric tests proved to be a valid tool to assess the acute effect of AR of ThMBR on the activity of mesophilic biomass in the case of recirculation.


1972 ◽  
Vol 18 (7) ◽  
pp. 1168-1170 ◽  
Author(s):  
C. R. MacKenzie ◽  
D. C. Jordan

Mutation to viomycin-resistance in Rhizobium meliloti R21 resulted in an accumulation of phosphatidylcholine and phosphatidylethanolamine in the cell wall. Resistance to viomycin decreased when the excess lipid was removed by EDTA or when its synthesis was prevented by growth of normally resistant cells at 40 °C. Microelectrophoretic data showed binding of viomycin to the cell surface and it is proposed that the mechanism of resistance to viomycin is an immobilization of the antibiotic in the surface layers of the cell as a result of combination with phospholipid.


Sign in / Sign up

Export Citation Format

Share Document