scholarly journals Three-dimensional Tomography of Coseismic Ionospheric Disturbances from the 2016 West Sumatera Earthquake

2021 ◽  
Vol 936 (1) ◽  
pp. 012022
Author(s):  
R W Rahayu ◽  
M N Cahyadi ◽  
B Muslim ◽  
I M Anjasmara ◽  
E Y Handoko ◽  
...  

Abstract Global Navigation Satellite System (GNSS) is a navigation system that uses satellite signals to determine its position, which consists of several satellites arranged in a constellation system. GNSS transmits signals to receivers on Earth. The GNSS receiver determines the user’s position, speed, and time by processing the signals transmitted by the satellites. The initial purpose of launching the GNSS was for navigation purposes, but along with its development, GNSS can be used for the purposes of observing deformation of the earth’s crust and in studying the atmosphere. The delayed wave data when passing through the ionosphere can be used to obtain Total Electron Content (TEC) values which then used to study ionospheric disturbances. Ionospheric disturbances are caused by various phenomena, the most common one is the ionospheric disturbances caused by the induction of acoustic and gravitational waves excited by co seismic crustal motions from large earthquakes. Ionospheric disturbances that happened before an earthquake are called Pre-seismic Ionospheric Disturbances and those that occur after an earthquake are called Co-seismic Ionospheric Disturbances (CID). Most studies of ionospheric disturbances still provide information on the timing and value of TEC anomalies in 2D form. Therefore, in this study, a 3D ionosphere profile modelling using computed 3D tomography will be carried out. The 3D information provided is in the form of time, ionosphere altitude and TEC anomaly value by utilizing GNSS data. The TEC anomaly value is obtained from the calculation of linear combination of the ionosphere. This study aims to obtain a spatial and temporal analysis of the CID caused by the West Sumatra Earthquake on March 2, 2016.

2015 ◽  
Vol 33 (1) ◽  
pp. 129-135 ◽  
Author(s):  
J. Park ◽  
H. Lühr ◽  
M. Noja

Abstract. Total electron content (TEC) between Low-Earth-Orbit (LEO) satellites and the Global Navigation Satellite System (GNSS) satellites can be used to constrain the three-dimensional morphology of equatorial plasma bubbles (EPBs). In this study we investigate TEC measured onboard the Challenging Minisatellite Payload (CHAMP) from 2001 to 2005. We only use TEC data obtained when CHAMP passed through EPBs: that is, when in situ plasma density measurements at CHAMP altitude also show EPB signatures. The observed TEC gradient along the CHAMP track is strongest when the corresponding GNSS satellite is located equatorward and westward of CHAMP with elevation angles of about 40–60°. These elevation and azimuth angles are in agreement with the angles expected from the morphology of the plasma depletion shell proposed by Kil et al.(2009).


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 443 ◽  
Author(s):  
Thomas Mikesell ◽  
Lucie Rolland ◽  
Rebekah Lee ◽  
Florian Zedek ◽  
Pierdavide Coïsson ◽  
...  

We present the framework of the modeling package IonoSeis. This software models Global Navigation Satellite System (GNSS) derived slant total electron content (sTEC) perturbations in the ionosphere due to the interaction of the neutral atmosphere and charged particles in the ionosphere. We use a simplified model to couple the neutral particle momentum into the ionosphere and reconstruct time series of sTEC perturbations that match observed data in both arrival time and perturbation shape. We propagate neutral atmosphere disturbances to ionospheric heights using a three-dimensional ray-tracing code in spherical coordinates called Windy Atmospheric Sonic Propagation (WASP3D), which works for a stationary or non-stationary atmospheric models. The source of the atmosphere perturbation can be an earthquake or volcanic eruption; both couple significant amounts of energy into the atmosphere in the frequency range of a few Millihertz. We demonstrate the output of the code by comparing modeled sTEC perturbation data to the observed perturbation recorded at GNSS station BTNG (Bitung, Indonesia) immediately following the 28 September 2018, Sulawesi-Palu earthquake. With this framework, we provide a software to couple the lithosphere, atmosphere, and ionosphere that can be used to study post-seismic ionospherically-derived signals.


Geosciences ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Christina Oikonomou ◽  
Haris Haralambous ◽  
Sergey Pulinets ◽  
Aakriti Khadka ◽  
Shukra R. Paudel ◽  
...  

The purpose of the present study is to investigate simultaneously pre-earthquake ionospheric and atmospheric disturbances by the application of different methodologies, with the ultimate aim to detect their possible link with the impending seismic event. Three large earthquakes in Mexico are selected (8.2 Mw, 7.1 Mw and 6.6 Mw during 8 and 19 September 2017 and 21 January 2016 respectively), while ionospheric variations during the entire year 2017 prior to 37 earthquakes are also examined. In particular, Total Electron Content (TEC) retrieved from Global Navigation Satellite System (GNSS) networks and Atmospheric Chemical Potential (ACP) variations extracted from an atmospheric model are analyzed by performing statistical and spectral analysis on TEC measurements with the aid of Global Ionospheric Maps (GIMs), Ionospheric Precursor Mask (IPM) methodology and time series and regional maps of ACP. It is found that both large and short scale ionospheric anomalies occurring from few hours to a few days prior to the seismic events may be linked to the forthcoming events and most of them are nearly concurrent with atmospheric anomalies happening during the same day. This analysis also highlights that even in low-latitude areas it is possible to discern pre-earthquake ionospheric disturbances possibly linked with the imminent seismic events.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
YuXiang Peng ◽  
Wayne A Scales ◽  
Michael D Hartinger ◽  
Zhonghua Xu ◽  
Shane Coyle

AbstractIonospheric irregularities can adversely affect the performance of Global Navigation Satellite System (GNSS). However, this opens the possibility of using GNSS as an effective ionospheric remote sensing tool. Despite ionospheric monitoring has been undertaken for decades, these irregularities in multiple spatial and temporal scales are still not fully understood. This paper reviews Virginia Tech’s recent studies on multi-scale ionospheric irregularities using ground-based and space-based GNSS observations. First, the relevant background of ionospheric irregularities and their impact on GNSS signals is reviewed. Next, three topics of ground-based observations of ionospheric irregularities for which GNSS and other ground-based techniques are used simultaneously are reviewed. Both passive and active measurements in high-latitude regions are covered. Modelling and observations in mid-latitude regions are considered as well. Emphasis is placed on the increased capability of assessing the multi-scale nature of ionospheric irregularities using other traditional techniques (e.g., radar, magnetometer, high frequency receivers) as well as GNSS observations (e.g., Total-Electron-Content or TEC, scintillation). Besides ground-based observations, recent advances in GNSS space-based ionospheric measurements are briefly reviewed. Finally, a new space-based ionospheric observation technique using GNSS-based spacecraft formation flying and a differential TEC method is demonstrated using the newly developed Virginia Tech Formation Flying Testbed (VTFFTB). Based on multi-constellation multi-band GNSS, the VTFFTB has been developed into a hardware-in-the-loop simulation testbed with external high-fidelity global ionospheric model(s) for 3-satellite formation flying, which can potentially be used for new multi-scale ionospheric measurement mission design.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fuying Zhu ◽  
Yingchun Jiang

Abstract With the rapid development of the Global Navigation Satellite System (GNSS) and its wide applications to atmospheric science research, the global ionosphere map (GIM) total electron content (TEC) data are extensively used as a potential tool to detect ionospheric disturbances related to seismic activity and they are frequently used to statistically study the relation between the ionosphere and earthquakes (EQs). Indeed, due to the distribution of ground based GPS receivers is very sparse or absent in large areas of ocean, the GIM-TEC data over oceans are results of interpolation between stations and extrapolation in both space and time, and therefore, they are not suitable for studying the marine EQs. In this paper, based on the GIM-TEC data, a statistical investigation of ionospheric TEC variations of 15 days before and after the 276 M ≥ 6.0 inland EQs is undertaken. After eliminating the interference of geomagnetic activities, the spatial and temporal distributions of the ionospheric TEC disturbances before and after the EQs are investigated and compared. There are no particularly distinct features in the time distribution of the ionospheric TEC disturbances before the inland EQs. However, there are some differences in the spatial distribution, and the biggest difference is precisely in the epicenter area. On the other hand, the occurrence rates of ionospheric TEC disturbances within 5 days before the EQs are overall higher than those after EQs, in addition both of them slightly increase with the earthquake magnitude. These results suggest that the anomalous variations of the GIM-TEC before the EQs might be related to the seismic activities.


2021 ◽  
Author(s):  
Nicholas Ssessanga ◽  
Mamoru Yamamoto ◽  
Susumu Saito

Abstract This paper demonstrates and assesses the capability of the advanced three- dimensional (3-D) ionosphere tomography technique, during severe conditions. The study area is northeast Asia and quasi-Japan-centred. Reconstructions are based on Total electron content data from a dense ground-based global navigation satellite system receiver network and parameters from operational ionosondes. We used observations from ionosondes, Swarm satellites and radio occultation (RO) to assess the 3-D picture. Specifically, we focus on St. Patrick’s day solar storm (17–19 March 2015), the most intense in solar cycle 24. During this event, the energy ingested into the ionosphere resulted in Dst and Kp and reaching values ~-223 nT and 8, respectively, and the region of interest, the East Asian sector, was characterized by a ~ 60% reduction in electron densities. Results show that the reconstructed densities follow the physical dynamics previously discussed in earlier publications about storm events. Moreover, even when ionosonde data were not available, the technique could still provide a consistent picture of the ionosphere vertical structure. Furthermore, analyses show that there is a profound agreement between the RO profiles/in-situ densities and the reconstructions. Therefore, the technique is a potential candidate for applications that are sensitive to ionospheric corrections.


2019 ◽  
Vol 30 ◽  
pp. 15007
Author(s):  
George Minasyan ◽  
Ivan Nesterov ◽  
Yaroslav Ilyushin

Based on the analysis of the phase data of the global navigation satellite system, distributions of time derivatives of the L1 phase frequency and the total electronic content are obtained. The change in the distributions of observed statistics of time derivatives of the total electron content was analyzed, because there are cycle slips in signals of navigation satellites. According to the analysis of the statistics of the phase of signals, an assumption about the physical and technical reasons for phase failures was made. The correlation between time derivatives of the phase signals and the total electron content has been obtained, despite the apparent dependence of the latter on the phase of the signal. This ratio showed that neither direct nor inverse dependence of the change in the distribution of time derivatives in both of quantities was found.


2021 ◽  
Vol 95 (12) ◽  
Author(s):  
A. Rovira-Garcia ◽  
C. C. Timoté ◽  
J. M. Juan ◽  
J. Sanz ◽  
G. González-Casado ◽  
...  

AbstractThe Galileo High Accuracy Service (HAS) is a new capability of the European Global Navigation Satellite System that is currently under development. The Galileo HAS will start providing satellite orbit and clock corrections (i.e. non-dispersive effects) and soon it will also correct dispersive effects such as inter-frequency biases and, in its full capability, ionospheric delay. We analyse here an ionospheric correction system based on the fast precise point positioning (Fast-PPP) and its potential application to the Galileo HAS. The aim of this contribution is to present some recent upgrades to the Fast-PPP model, with the emphasis on the model geometry and the data used. The results show the benefits of integer ambiguity resolution to obtain unambiguous carrier phase measurements as input to compute the Fast-PPP model. Seven permanent stations are used to assess the errors of the Fast-PPP ionospheric corrections, with baseline distances ranging from 100 to 1000 km from the reference receivers used to compute the Fast-PPP corrections. The 99% of the GPS and Galileo errors in well-sounded areas and in mid-latitude stations are below one total electron content unit. In addition, large errors are bounded by the error prediction of the Fast-PPP model, in the form of the variance of the estimation of the ionospheric corrections. Therefore, we conclude that Fast-PPP is able to provide ionospheric corrections with the required ionospheric accuracy, and realistic confidence bounds, for the Galileo HAS.


Author(s):  
S. Mohanty ◽  
C. Carrano ◽  
G. Singh

<p><strong>Abstract.</strong> The applications of synthetic aperture radars (SAR) have increased manifold in the past decade, which includes numerous Earth observation applications such as agriculture, forestry, disaster monitoring cryospheric- and atmospheric- studies. Among them, the potential of SAR for ionospheric studies is gaining importance. The susceptibility of SAR to space weather dynamics, and ionosphere in particular, comes at low frequencies of L- and P-bands. This paper discusses one such scintillation event that was observed by L-band Advanced Land Observation Satellite (ALOS)-2 Phased Array L-type SAR (PALSAR) over southern India on March 23, 2015. The sensors also acquired data sets on four other days on which the ionosphere was quiet. Ionospheric parameter measurements of total electron content (TEC) and amplitude scintillation (S<sub>4</sub>) index from ground-based Global Navigation Satellite System (GNSS) receiver at Tirunelveli was used to establish the ionospheric conditions on the days of SAR acquisition as well as to corroborate the S<sub>4</sub> estimated from SAR. Multi-temporal ALOS-2 data sets were utilized to calculate S<sub>4</sub> from two separate methods and the results have a good agreement with GNSS receiver measurements. This highlights the potential of SAR as an alternate technique of monitoring ionospheric scintillations that can be utilized as complementary to the highly accurate and dedicated measurements from the GNSS networks.</p>


Sign in / Sign up

Export Citation Format

Share Document