scholarly journals Decolourization of congo red synthetic dyes by dark septate endophytes

2021 ◽  
Vol 948 (1) ◽  
pp. 012073
Author(s):  
I Melati ◽  
G Rahayu ◽  
Surono ◽  
H Effendi ◽  
C Henny

Abstract The use of fungi is known to be an eco-friendly and cost-competitive approach to degrade synthetic dyes such as Congo Red (CR) in industrial effluents. This research aimed to evaluate the potential of dark septate endophytes (DSE) fungi in decolourizing CR synthetic dyes. Two DSE strains, namely CPP and KSP, were studied to decolourize 50 mgL−1 CR based on the capability to produce the ligninolytic enzyme, dye decolourization efficiency, decolourization index, and fungal dry biomass weight after 7 and 14 days of incubation. CR decolourization was monitored spectrophotometry at 495 nm. The result indicated that CPP and KSP were successfully decolourized CR dye up to 97.00% and 85.00%, respectively, with decolourization index of 1.37 and 1.36 within 14 days. There is no significant difference in DSE growth with and without the addition of CR dye. In addition, these two DSE fungi (CPP and KSP) are able to produce ligninolytic enzymes. The results indicated that the DSE are potential to be used as decolourization agents for azo synthetic dyes. This is the first report on the ability of DSE to decolourize azo synthetic dyes.

2019 ◽  
Vol 87 (1) ◽  
Author(s):  
Firda DIMAWARNITA ◽  
TRI - PANJI

Ligninolytic enzymes are known as extracellular enzymes produced by the white rot fungi class of basidiomycetes. One of the most well-known fungi of the white rot fungus isPleurotus ostreatus. The aim of this study to calculate the activity of ligninolytic enzymes in the growth media of Pleurotus ostreatusand their application in decolorization of dye colour. The ligninolytic enzyme extract obtained was used to decolorize bluedyes (MethyleneBlue)and red dyes(Congo Red). The highest laccase enzyme activity was in the first month of 0.35 U/mL with E1 media composition; the highest manganese peroxidase (MnP) enzyme activity was in the fourth month at 31.818 U / mL with E4 media composition; and the highest lignin peroxidase (LiP) enzyme activity was in the fifth month at 0.269 U / mL with E1 media composition. The enzyme extract obtained was then applied to decolorize red and blue dyes. Decolorization of dyes was measured using spectrophotometry with a blue wavelength of 470 nm and red 685 nm. The highest reduction in decolorization of blue dye and red dye was 12 hours with concentration of enzyme addition of 0.5%. Based on these results, ligninolytic enzymes potentiallyto be developed as bioactive agents for detergents.[Keywords: decolorization, laccase, mangan peroxidase, lignin peroxidase, spectrofotometry] AbstrakEnzim ligninolitik dikenal sebagai enzim ekstraseluler yang dihasilkan oleh jamur pelapuk putih golongan basidiomycetes. Salah satu jamur dari golongan jamur pelapuk putih yang banyak dikenal adalah Pleurotus ostreatus. Penelitian ini bertujuan menghitung aktivitas enzim ligninolitik pada media pertumbuhan jamur tiram  (Pleurotus ostreatus) dan aplikasinya dalam dekolorisasi zat warna.  Ekstrak enzim ligninolitik yang didapatkan kemudian dimanfaatkan untuk dekolorisasi zat warna biru(Methylene Blue)dan merah (Congo Red). Aktivitas enzim lakase tertinggi ada pada bulan pertama sebesar 0,35 U/mL dengan komposisi media E1; aktivitas enzim mangan peroksidase (MnP) tertinggi ada pada bulan keempat sebesar 31,818 U/mL dengan komposisi media E4; dan aktivitas enzim lignin peroksidase (LiP) tertinggi ada pada bulan kelima sebesar 0,269 U/mL dengan komposisi media E1. Ekstrak enzim yang didapat kemudian diaplikasikan untuk dekolorisasi zat warna merah dan biru. Dekolorisasi zat warna diukur menggunakan spektrofotometri dengan panjang gelombang biru pada 470 nm dan merah pada 685 nm. Penurunan dekolorisasi zat warna birudan zat warna merahtertinggi selama 12jam dengan konsentraasi penambahan enzim sebesar 0,5%.Berdasarkan hasil tersebut, enzim ligninolitik sangat potensial untuk dikembangkan sebagai agen bioaktif untuk deterjen.[Kata kunci: dekolorisasi, lakase, mangan peroksidase, lignin peroksidase,  spektrofotometri]


Author(s):  
Kavitha Mary Jackson ◽  
Velu Gomathi

Aims: A study was conducted to evaluate decoloration of azo dye, Congo Red (CR) using fungal hyphal mat of beneficial bacidiomycete Termitomyces sp. TMS7 (MW694830) as bio sorbent material. Study design:  Completely randomized block design (CRD). Place and duration of study: Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, between September 2019 and January 2020. Methodology: Isolation of white rot fungus from basidiocarb was done and screened based on their ligninolytic enzyme activity and Isolate TMS 7 was selected as best isolate and identified through ITS 1 and ITS 4 primers. Efficiency of fungal biomass to decolorize Congo red was assessed and per cent decoloration and kinetics were calculated. Results: Twelve fungal isolates were obtained and Isolate TMS 7 was selected as best isolate based on enzymatic activity. TMS 7 was identified as Termitomyces sp. using ITS 1 and ITS 4 primer. Ligninolytic enzymes i.e. cellulase (9.97 µ mol of glucose released/min/mg protein), and xylanase (9.55 µ mol of xylose released/min/mg protein) were quantified from the crude fungal extract of TMS 7, which was higher than standard (Termitomyces albuminosus -MTCC 1366). Decolorisation efficiency of termitomyces fungal biomass (1 g/100 ml) against different concentration of congo red dye (50-250 mg/L) was assessed. About 100 % (99.9) degradation was recorded in the minimum dye concentration of 50 mg/L within 3 days and 8 % decoloration was achieved at the highest dye concentration (250 mg/L) within 5 days. Conclusion: Possible mechanism of degradation is the presence of lignolytic enzyme especially cellulase, xylanase in the culture filtrate and bio sorption of degraded product by the fungal cell wall components viz., chitin, glucan other complex polymers.


2020 ◽  
Vol 6 (4) ◽  
pp. 301
Author(s):  
Ivana Eichlerová ◽  
Petr Baldrian

An extensive screening of saprotrophic Basidiomycetes causing white rot (WR), brown rot (BR), or litter decomposition (LD) for the production of laccase and Mn-peroxidase (MnP) and decolorization of the synthetic dyes Orange G and Remazol Brilliant Blue R (RBBR) was performed. The study considered in total 150 strains belonging to 77 species. The aim of this work was to compare the decolorization and ligninolytic capacity among different ecophysiological and taxonomic groups of Basidiomycetes. WR strains decolorized both dyes most efficiently; high decolorization capacity was also found in some LD fungi. The enzyme production was recorded in all three ecophysiology groups, but to a different extent. All WR and LD fungi produced laccase, and the majority of them also produced MnP. The strains belonging to BR lacked decolorization capabilities. None of them produced MnP and the production of laccase was either very low or absent. The most efficient decolorization of both dyes and the highest laccase production was found among the members of the orders Polyporales and Agaricales. The strains with high MnP activity occurred across almost all fungal orders (Polyporales, Agaricales, Hymenochaetales, and Russulales). Synthetic dye decolorization by fungal strains was clearly related to their production of ligninolytic enzymes and both properties were determined by the interaction of their ecophysiology and taxonomy, with a more relevant role of ecophysiology. Our screening revealed 12 strains with high decolorization capacity (9 WR and 3 LD), which could be promising for further biotechnological utilization.


2020 ◽  
Vol 2 (2) ◽  
pp. 22-29
Author(s):  
Alina Tatarus ◽  
Claudia Maria Simionescu ◽  
Roxana Elena Scutariu ◽  
Vasile Ion Iancu ◽  
Florinela Pirvu ◽  
...  

Surface water contamination by synthetic dyes generates human and wildlife adverse health effects and causes photosynthesis decrease due to intense sun-light absorption of these pollutants. 50% of total discharged industrial effluents contain azo dyes. Congo Red is a benzidine based anionic azo dye that is usually employed in rubber, paper and plastic industries. Congo Red can cause eye and skin irritation and is potentially carcinogenic in nature. This study explores the development of a new HPLC method to detect synthetic dyes in residual waters coming from wastewater treatment technologies based on magnetic material adsorption. Cobalt ferrite (CoFe2O4) and chitosan-coated cobalt ferrite (CoFe2O4-Chit) prepared by a simple co-precipitation method were tested as adsorbents for Congo Red (CR). Effect of contact time, solution pH, and initial dye concentration were studied with respect to Congo Red adsorption efficiency. The adsorption experiments were performed at pH = 4.5 and 10.8. The highest value for the removal efficiency using the magnetic material of cobalt ferrite coated with chitosan (CoFe2O4-Chit) was obtained at pH 10.8.


2021 ◽  
Vol 7 (10) ◽  
pp. 805
Author(s):  
Juvenal Juárez-Hernández ◽  
Dalia Castillo-Hernández ◽  
Cristhian Pérez-Parada ◽  
Soley Nava-Galicia ◽  
Jaime Alioscha Cuervo-Parra ◽  
...  

Six fungal strains were isolated from the textile industry effluent in which they naturally occur. Subsequently, the fungal strains were identified and characterized in order to establish their potential decolorizing effect on textile industry effluents. The strains of interest were selected based on their capacity to decolorize azo, indigo, and anthraquinone dyes. Three of the strains were identified as Emmia latemarginata (MAP03, MAP04, and MAP05) and the other three as Mucor circinelloides (MAP01, MAP02, and MAP06), while the efficiency of their decolorization of the dyes was determined on agar plate and in liquid fermentation. All the strains co-metabolized the dyes of interest, generating different levels of dye decolorization. Plate screening for lignin-degrading enzymes showed that the MAP03, MAP04, and MAP05 strains were positive for laccase and the MAP01, MAP02, and MAP06 strains for tyrosinase, while all strains were positive for peroxidase. Based on its decolorization capacity, the Emmia latemarginata (MAP03) strain was selected for the further characterization of its growth kinetics and ligninolytic enzyme production in submerged fermentation under both enzyme induction conditions, involving the addition of Acetyl yellow G (AYG) dye or wheat straw extract, and no-induction condition. The induction conditions promoted a clear inductive effect in all of the ligninolytic enzymes analyzed. The highest level of induced enzyme production was observed with the AYG dye fermentation, corresponding to versatile peroxidase (VP), manganese peroxidase (MnP), and lignin peroxidase (LiP). The present study can be considered the first analysis of the ligninolytic enzyme system of Emmia latemarginata in submerged fermentation under different conditions. Depending on the results of further research, the fungal strains analyzed in the present research may be candidates for further biotechnological research on the decontamination of industrial effluents.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 384
Author(s):  
Ahmed Labena ◽  
Ahmed E. Abdelhamid ◽  
Abeer S. Amin ◽  
Shimaa Husien ◽  
Liqaa Hamid ◽  
...  

Biosorption is a bioremediation approach for the removal of harmful dyes from industrial effluents using biological materials. This study investigated Methylene blue (M. blue) and Congo red (C. red) biosorption from model aqueous solutions by two marine macro-algae, Ulva fasciata and Sargassum dentifolium, incorporated within acrylic fiber waste to form composite membranes, Acrylic fiber-U. fasciata (AF-U) and Acrylic fiber-S. dentifolium (AF-S), respectively. The adsorption process was designed to more easily achieve the 3R process, i.e., removal, recovery, and reuse. The process of optimization was implemented through one factor at a time (OFAT) experiments, followed by a factorial design experiment to achieve the highest dye removal efficiency. Furthermore, isotherm and kinetics studies were undertaken to determine the reaction nature. FT-IR and SEM analyses were performed to investigate the properties of the membrane. The AF-U membrane showed a significant dye removal efficiency, of 88.9% for 100 ppm M. blue conc. and 79.6% for 50 ppm C. red conc. after 240 min sorption time. AF-S recorded a sorption capacity of 82.1% for 100 ppm M. blue conc. after 30 min sorption time and 85% for 100 ppm C. red conc. after 240 min contact time. The membranes were successfully applied in the 3Rs process, in which it was found that the membranes could be used for five cycles of the removal process with stable efficiency.


Plant Disease ◽  
2014 ◽  
Vol 98 (12) ◽  
pp. 1745-1745 ◽  
Author(s):  
R. Pedrozo ◽  
C. R. Little

A three-year survey from 2010 to 2012 was conducted in Kansas to investigate the identity and diversity of seedborne Fusarium spp. in soybean. A total of 408 soybean seed samples from 10 counties were tested. One hundred arbitrarily selected seeds from each sample were surface-sterilized for 10 min in a 1% sodium hypochlorite solution to avoid contaminants and promote the isolation of internal fusaria. Seeds were rinsed with sterile distilled water and dried overnight at room temperature (RT). Surface-sterilized seeds were plated on modified Nash-Snyder medium and incubated at 23 ± 2°C for 7 days. Fusarium isolates were single-spored and identified by morphological characteristics on carnation leaf agar (CLA) and potato dextrose agar (PDA) (3). From 276 seedborne Fusarium isolates, six were identified as F. thapsinum (2). On CLA, F. thapsinum isolates produced abundant mycelium and numerous chains of non-septate microconidia produced from monophialides. Microconidia were club-shaped and some were napiform. No chlamysdospores were found. On PDA, three of the isolates presented characteristic dark yellow pigmentation and three were light violet. Confirmation of the isolates to species was based on sequencing of an elongation factor gene (EF1-α) segment using primers EF1 and EF2 and the beta-tubulin gene using primers Beta1 and Beta2 (1). Sequence results (~680 bp, EF primers; ~600 bp, beta-tubulin primers) were confirmed by using the FUSARIUM-ID database (1). All isolates matched F. thapsinum for both genes sequenced (Accession No. FD01177) at 99% identity. Koch's postulates were completed for two isolates of F. thapsinum under greenhouse conditions. Soybean seeds (Asgrow AG3039) were imbibed with 2.5 × 105 conidia ml−1 for 48 h. After inoculation, seeds were dried for 48 h at RT. One isolate each of F. equiseti and F. oxysporum were used as the non-pathogenic and pathogenic inoculation controls, respectively. In addition, non-inoculated seeds and seeds imbibed in sterile distilled water (mock) were also used. Twenty-five seeds from each treatment were planted in pots (500 ml) with autoclaved soil and vermiculite (1:1). The experiment was a completely randomized design with three replicates (pots) per isolate. The entire experiment was repeated three times. After 21 days, aggressiveness of both F. thapsinum isolates was assessed using initial stand (%), final stand (%), and seed mortality (% of non-germinated seeds). Both seedborne F. thapsinum isolates caused reduced emergence and final stand, and increased seedling mortality when compared to the non-inoculated and F. equiseti controls (P< 0.0001). No significant difference was observed between F. thapsinum isolates and F. oxysporum. F. thapsinum isolates were re-isolated from wilted seedlings and non-germinated seeds, but not from the control treatments. Typically, F. thapsinum is considered a pathogen of sorghum, but it has also been recovered from bananas, peanuts, maize, and native grasses (3). However, its presence on soybean plant tissues and its pathogenicity has never been reported. To our knowledge, this is the first report of seedborne F. thapsinum and its pathogenicity on soybean in the United States. References: (1) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (2) C. J. R. Klittich et al. Mycologia 89:644, 1997. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, UK, 2006.


2006 ◽  
Vol 58 (3) ◽  
pp. 179-182 ◽  
Author(s):  
Jelena Vukojevic ◽  
Mirjana Stajic ◽  
Sonja Duletic-Lausevic ◽  
Jasmina Simonic

The effect of initial medium pH on biomass, extracellular and intracellular polysaccharide, and ligninolytic enzyme production by Ganoderma lucidum was investigated at different pH values after 7 and 14 days of cultivation. Maximal production of biomass was recorded at pH 4.5 and 5.0; maximal production of extracellular polysaccharides at pH 7.0 and 3.0; and maximal production of intracellular polysaccharides at pH 7.0 and 5.5. Ligninolytic enzymes were not produced at any pH of the medium. Maximal biomass production was obtained on the 11th day of cultivation; maximal extracellular polysaccharide production on the 7th day; and maximal intracellular polysaccharide production on the 6th and 10th day of cultivation. .


2021 ◽  
Vol 6 (1) ◽  
pp. 168-174
Author(s):  
Z. M. Sani ◽  
◽  
A.S. Dalhatu ◽  
S. Ibrahim

Re-dyeing of fabric materials using synthetic dyes (such as reactive dyes) is fast spreading in metropolitan Kano which causes serious damage to the ecosystems. This study was carried out to compare the potentials of Aspergillus terreus, Bacillus species and Chlorella vulgaris in bioremediation and adsorption of reactive red 198 (RR198) dye used in fabric re-dyeing. This was achieved through inoculation of pure cultures of the organisms in the dye solution. The highest percentage adsorption for all the test organisms was recorded after 48 hours of inoculation, with Chlorella vulgaris displaying 86.4%, Bacillus species, 84.4% and Aspergillus terreus, 69.8% of dye adsorption. The results showed statistically significant difference in dye adsorption among the three species with Chlorella vulgaris having the highest adsorption potential compared to the Bacillus species and Aspergillus terreus. The adsorption process fitted with the Freundlich's isotherm, revealing a multilayer adsorption pattern. There is need for the introduction of better strategies that detoxify dyes before discharging into the environment to avoid further contamination. Keywords: Aspergillus terreus, Bacillus species, Chlorella vulgaris, Reactive red 198 (RR198) dye.


2019 ◽  
Vol 23 (1) ◽  
Author(s):  
Sita Heris Anita ◽  
Fahriya Puspita Sari ◽  
Dede Heri Yuli Yanto

Sign in / Sign up

Export Citation Format

Share Document