scholarly journals Bamboo as future bio-industrial material: Physical behaviour and bending strength of Malaysia’s Beting bamboo (Gigantochloa levis)

2022 ◽  
Vol 951 (1) ◽  
pp. 012001
Author(s):  
S Osman ◽  
M Ahmad ◽  
M N Zakaria ◽  
A M Zakaria ◽  
Z Ibrahim ◽  
...  

Abstract In this paper, bending strength and physical properties (specific gravity, dimensional stability and equilibrium moisture content) of a Malaysian bamboo locally known as Beting bamboo (Gigantochloa levis) are addressed. Characterizations of physical and bending strength of G. levis in terms of the variability of location along culm height (top, middle, bottom), culm section (nodes and internodes), fiber orientation (longitudinal, tangential and radial) and culm layer (outer and inner) were conducted. Comparison of these properties is also made to some bamboo and commercial timber species. It was found that G. levis has favorable physical and mechanical properties although the specific gravity of G. levis has tendency to be on the higher side. The characteristics studied were found to have some variability at different locations, sections, and directions. There was variability in terms of bending strength along with the culm height of bamboo. It is indicated from this study that the bending strength and physical properties of G. levis were found to be satisfactory.

2019 ◽  
Vol 70 (3) ◽  
pp. 221-228
Author(s):  
Abdullah Istek ◽  
Ismail Ozlusoylu

In this study, the effect of mat moisture content on the physical and mechanical properties of particleboard was investigated. The experimental boards were produced by using 40 % softwood, 45 % hardwood chips, and 15 % sawdust. The formaldehyde resin/adhesive was used in three-layers (bottom-top layer 12 %, core layer 8 %). Multi-opening press was used during manufacturing the experimental particleboards. The physical and mechanical properties of boards obtained were identified according to the TS-EN standards. The optimum core layer moisture content was determined as 6 % and 7 % according to the results, whereas the moisture content of bottom and top layers was 14 %. Under these moisture content conditions, the bending strength was found to be 13.3 N/mm², the modulus of elasticity in bending 2466 N/mm², and internal bonding strength 0.44 N/mm². The optimum bottom-top layer moisture content was determined to be between 13 % and 15 % and 6.5 % for the core layer.


2020 ◽  
Vol 70 (3) ◽  
pp. 326-334
Author(s):  
Marly Gabriela Carmona Uzcategui ◽  
Roy Daniel Seale ◽  
Frederico José Nistal França

Abstract Maple and poplar are common names of species that grow in the eastern United States. Physical and mechanical properties were evaluated from small clear wood specimens of hard maple (Acer saccharum) and yellow poplar (Liriodendron tulipifera). Specific gravity, static bending strength and modulus of elasticity, compression parallel and perpendicular to grain, and Janka hardness were tested. The experiments were carried out on defect-free specimens extracted from boards supplied by members of the Staircase Manufacturers Association. The material was donated by companies located in the eastern United States. On the basis of the findings, it can be stated that mechanical properties for maple and yellow poplar have not changed substantially because the average values remain in a range that is very close to the values published in previous studies.


1970 ◽  
Vol 34 (2) ◽  
pp. 181-187 ◽  
Author(s):  
UK Rokeya ◽  
M Akter Hossain ◽  
M Rowson Ali ◽  
SP Paul

The physical and mechanical properties of hybrid Acacia, produced from natural crossing between two introduced timber species (Acacia auriculiformis and Acacia mangium) were studied. The timber hybrid Acacia is of medium dense having specific gravity 0.56 at green condition which is less than that of teak (Tectona grandis). The volumetric shrinkage of hybrid Acacia wood was found greater than that of teak but the specific gravity was found less than that of teak. From the study of physical and mechanical properties it is evident that the species is moderately strong. The species is suitable for making furniture and other household articles. Key words: Hybrid Acacia; Specific gravity; Physical properties; Mechanical properties DOI: 10.3329/jbas.v34i2.6864Journal of Bangladesh Academy of Sciences, Vol. 34, No. 2, 181-187, 2010


2016 ◽  
Vol 842 ◽  
pp. 103-128
Author(s):  
Kang Chiang Liew ◽  
Singan Grace

Utilisation of forest plantation species such as Acacia hybrid has been used in wood-based industry as an alternative to solid wood that was usually attained from natural forest. While, the under-utilised species such as Mangifera sp. is not often been used as raw material for wood products, in this study, laminated veneer lumber (LVL) has been produced from Acacia hybrid and Mangifera sp. The physical and mechanical properties of LVL were determined and compared. For physical testing, the range value of moisture content was 9.41% to 14.56%, Density was 487.90 kg/m3 to 699.10 kg/m3, thickness swelling was between 0.20% to 6.05%, water absorption between 32.71% to 91.25%, and rate of delamination from 0% to 100%. Mangifera sp. LVL has higher moisture content, rate of delamination, and water absorbency. In mechanical testing, it is been found that Acacia hybrid LVL has overall higher strength compared to Mangifera sp. LVL, in terms of static bending strength (MOR and MOE), shear strength, and compression strength. Range of value for MOR was between 10.27 N/mm2 to 129.99 N/mm2, MOE between 1138 N/mm2 to 16472.93 N/mm2, shear strength between 0.43 N/mm2 to 3.40 N/mm2, and compression between 139.45 N/mm2 to 6749.74 N/mm2. For physical testing, the overall result of p-value for moisture content, water absorption, and delamination were significant at p ≤ 0.05, while density and thickness swelling were not significant at p ≥ 0.05. For overall result, the p-value for static bending strength (MOR and MOE) was significant at p ≤ 0.05 while for shear strength and compression strength were not significant at p ≥ 0.05.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
. Wiwit ◽  
Dina Setyawati ◽  
Ahmad Yani ◽  
. Nurhaida

The manufacture of particleboards from dregs of sago and natural adhesives of citric-sucrose acid has not been widely reported. The aim of this research to examine the physical and mechanical properties of particleboard from dregs of sago based on particle size and the ratio of citric-sucrose. The dregs of sago used is 8-10 mesh and 20-40 mesh. Natural adhesive is used 20% of the dry weight dregs of sago. The ratio of citric acid-sucrose used varies 0/100, 25/75, 50/50, 75/25, 100/0. The particleboard is made manually consisting of 3 layers (face, core, back) were manufactured in 30 cm x 30 cm x 1 cm, and the target of density was 0,7 g/cm3. The pressing at a temperature of 180oC for 15 minutes, and pressure of 20 kg/cm2. The physical and mechanical  properties of particleboard were tested in accordance to standard JIS A 5908-2003 Type 8. The results showed particleboard that physical properties meets the standards is density, moisture content, and thickness development. The particleboard dregs of sago with ratio citric acid-sucrose 25/75 was able to provide the best results to meet the standards of JIS A 5908-2003 Type 8 for density values of 0,7532 g/cm3, moisture content of 8,6725%, thickness of  development 8,0756%.Keywords: citric acid-sucrose , dregs of sago, particleboard, particle size


2017 ◽  
Vol 5 (2) ◽  
pp. 94-108
Author(s):  
Bambang Raharmadi

The procedure carried out is testing the physical and mechanical properties of the soil from the quari of Bukit Batu village and quari of Manyawang hamlet based on the Indonesian National Standard (SNI). The purpose of the preparation of this paper was to determine the physical and mechanical properties of the soil from the quari of Bukit Batu village and quari dusun Manyawang so that it could be used as cement stabilization material. Quari soil test results in Bukit Batu village as deep as 1.5 meters from the ground surface with yellow brown soil color, 14.34% moisture content, 2.637 specific gravity and Manyawang quari dusun 1.25 meters from the ground with brownish yellow soil color water 13.80%, specific gravity 2.635. The grain size distribution test fulfilled the conditions allowed to be used as soil stabilization material for cement with a plasticity index of 5.41%, 6.21% = 10% of the specified conditions (Hicks, 2002) and the soil classification of the USCS system included in the CL-ML group namely non-organic silt, sandy clay with low plasticity and AASHTO were included in group A-4 namely silt clay with low plasticity. Quari compacting test (standard) in the village of Bukit Batu filled the maximum dry (?dmax) of the soil 1,860 t / m3, optimum moisture content of 13,30% and Manyawang maximum dry weight (mdmax) of soil 1,860 t / m3, optimum moisture content of 13.30%. Free compressive strength test (UCS) quari in Bukit Batu and Manyawang villages 3,451 kg / cm2, 3,521 kg / cm2 and CBR quari test in Bukit Batu and Manyawang villages CBR 100 9.40%, 8.10% and CBR 95 5.20%, 4.65%.


1970 ◽  
Vol 43 (4) ◽  
pp. 581-587
Author(s):  
M Hasan Shahria ◽  
M Ashaduzzaman ◽  
M Iftekhar Shams ◽  
Arifa Sharmin ◽  
M Muktarul Islam

The study was conducted to find out the potentiality of Pitali (Trewia nudiflora) for manufacturing commercial plywood and evaluating its physical and mechanical properties. Two 9-ply plywood of 2.4m x 1.2m x 18mm size were manufactured using liquid urea formaldehyde adhesive. The physical and mechanical properties of T. nudiflora plywood were compared with the existing market available plywood manufactured by Simul (Bombax ceiba). It was found that density were 509.82 kg/m3 and 490.96 kg/m3, moisture content after curing were 10.67% and 17.61%, thickness swelling were 6.90% and 7.29%, linear expansion were 0.19% and 0.15%, water absorption were 50.89% and 64.79%, MOR were 29.94 N/mm2 and 27.05 N/mm2, MOE were 1613.89 N/mm2 and 1160.68 N/mm2, and tensile strength were 14.75 N/mm2 and 13.12 N/mm2 for T. nudiflora plywood and market plywood respectively. The evaluated physical and mechanical properties of T. nudiflora plywood were also compared with some relevant results and standards reported earlier. Key Words: Plywood, Trewia nudiflora, Physical properties, Mechanical properties. doi: 10.3329/bjsir.v43i4.2249 Bangladesh J. Sci. Ind. Res. 43(4),581-587, 2008


2012 ◽  
Vol 51 (No. 2) ◽  
pp. 76-94
Author(s):  
J. Hrázský ◽  
P. Král

The paper summarizes results of an institutional research aimed at assessing the bending strength and modulus of elasticity in bending of exterior foiled combined and all-beech plywoods in relation to their construction. A relationship was studied of the plywood construction and selected physical and mechanical properties. In studied sheets, moisture, density, bending strength and modulus of elasticity were analysed along and across the grain of the upper veneer. All measurements were carried out in water-resistant plywoods with surface treatment with a phenolformaldehyde foil 8, 10, 12 and 15 mm thick in combined plywoods and 10, 12, 15 and 18 mm thick in all-beech plywoods. The construction of plywoods significantly influences their quality that is determined particularly by the bending strength and modulus of elasticity. Using regression analysis relationships were demonstrated particularly that with the increasing moisture content of plywoods the bending strength decreased and with the increasing density the bending strength and modulus of elasticity increased. The same trend was also proved in connection with the increasing number of veneers of plywood sheets. Using correlation analysis, combinations of interrelationships of the given properties were statistically tested.


2012 ◽  
Vol 26 (2) ◽  
pp. 211-215 ◽  
Author(s):  
A. Taheri-Garavand ◽  
A. Nassiri ◽  
S. Gharibzahedi

Physical and mechanical properties of hemp seedThe current study was conducted to investigate the effect of moisture content on the post-harvest physical and mechanical properties of hemp seed in the range of 5.39 to 27.12% d.b. Results showed that the effect of moisture content on the most physical properties of the grain was significant (P<0.05). The results of mechanical tests demonstrated that the effect of loading rate on the mechanical properties of hemp seed was not significant. However, the moisture content effect on rupture force and energy was significant (P<0.01). The lowest value of rupture force was obtained at the highest loading rate (3mm min-1)and in the moisture content of 27.12% d.b. Moreover, the interaction effects of loading rate and moisture content on the rupture force and energy of hemp seed were significant (P<0.05).


2017 ◽  
Vol 4 (2) ◽  
pp. 21
Author(s):  
Olindo Savi ◽  
Rafael Alves Souza ◽  
Nilson Tadeu Mascia ◽  
Mateus Henrique Souza

This study analyses the physical properties of recycled gypsum and mechanical performance of pre-molded gypsum panels made of recycled gypsum. A compatation with commercial gypsum physical properties and mechanica behavior of pre-molded commercial gypsum panels is also carried out. After collection, recycling and grinding gypsum residues, the quality of the powder produced was evaluated in terms of units of mass and fineness modulus. Additional tests of the dry paste were conducted for assessment of hardness, water absorption, and compressive strength of recycled gypsum. The commercial potential of the material was evaluated by the bending strength testing pre-molded panels. The results demonstrate that gypsum recycling is sustainable, ecologically correct and feasible for the production of pre-molded elements with great potential use in civil construction. Keywords: gypsum panels, mixed pastes, sustainable, gypsum pastes.


Sign in / Sign up

Export Citation Format

Share Document