scholarly journals Study of the dispersed composition of dust particles on the leaves of apricot trees (Prúnus armeníaca) in the residential area

2021 ◽  
Vol 1083 (1) ◽  
pp. 012098
Author(s):  
I Glinyanova ◽  
V Azarov
2019 ◽  
Vol 138 ◽  
pp. 01021
Author(s):  
Irina Glinyanova

A study of the small-dispersed dust chemical composition on the leaves of apricot trees (Prunus armeniaca) in the residential area of the Sredneakhtubinsky district of the Volgograd region was coducted. The aim of the study was to assess the environmental situation in low-rise buildings near functioning constructional and machinery enterprises. The leaves of apricot trees (Prunus armeniaca), growing in the residential area, were used as passive biomonitors. Chemical analysis of dust particles was carried out with the usage of a scanning electron microscope Versa 3D Dual Beam. As a result of the studies, the chemical composition of small-dispersed dust (PM1, PM2,5, PM10) on the leaves of apricot trees (Prunus armeniaca), which consisted of C,O, Mg, Al, Si, Cl, K, Ca, F, P, S, Fe, Mo. Chemical elements such as: F, P, S, Fe, Mo are not specific for leaf blades of apricot trees (Prunus armeniaca) and are environmental pollutants that have fallen on the leaves of apricot trees (Prunus armeniaca) from atmospheric air. In the future, it is necessary to find out the sources of atmospheric air pollution in the residential area by non-specific chemical elements and their compounds for this type of plant in the Sredneahtubinsky district of the Volgograd region, and to develop a set of environmental measures aimed to reduce pollutants emissions into the environment, and improving the quality of life of the population.


Vestnik MGSU ◽  
2020 ◽  
pp. 533-552
Author(s):  
Irina Yu. Glinyanova ◽  
Valery N. Azarov

Introduction. Fine dust puts human health at risk in populated areas. The research is focused on dust particles on the leaves of apricot trees (Prúnus armeníaca) in the residential area of the Central Akhtuba district of the Volgograd region (the area of single family houses and low rise townhouses) and in the public area (the area of public amenities) located in close proximity to construction and development enterprises, machine builders, etc. as compared to the dispersion composition of dust on the leaves of apricot trees (Prúnus armeníaca) in the territory occupied by rural housing communities in the conditionally clean zone (the benchmark zone) in absence of any man-induced loadings coming from industrial facilities (Oroshenets gardeners’ non-commercial partnership, Volgograd, Soviet district). The goal of the research is to study the dispersion composition of dust and to identify fine dust PM2.5 and PM10 using plant monitoring systems in the residential area. The objectives include the sampling of dust particles from plant leaves, dust analysis, and identification of areas exposed to ecological risks. Materials and methods. The leaves of apricot trees (Prúnus armeníaca), growing in residential and public areas of the Central Akhtuba district of the Volgograd region and in the territory of Oroshenets gardeners’ non-commercial partnership, Volgograd, Soviet district (the conditionally clean benchmark zone) represent the study material. Methods of research include leaf wash into the beaker full of distilled water, suspension filtration using AFA-VP analytical filter, filtrate production and natural drying at the temperature not exceeding 30–40 °C, and placement of the dried filtrate on the slide of an optical microscope. The distribution of dust particles was performed pursuant to State Standard of Russia 56929-2016. Results. The co-authors have identified the zones exposed to ecological risks in residential and public areas of the Central Akhtuba district of the Volgograd region (Bolnichnaya st., residential houses in Nechayeva, Omskaya streets, a kindergarten in Kavkazskaya st.: PM2.5, PM10) and safe residential areas (a boarding school in Vorovskogo st.: PM10 — 20 μm and 20–40 μm). Conclusions. Further studies of residential and public areas of the Central Akhtuba district of the Volgograd region are to be performed to identify the chemical composition of dust particles and the source of fine dust polluting the air and to develop a roadmap of environmental actions.


Author(s):  
Irina Glinyanova ◽  
Valery Azarov ◽  
Valery Fomichev

Fine dust: (PM2.5, PM10) is a priority pollutant that contributes to the development of numerous dis-eases in urban areas. The purpose of this scientific work is to study the dispersed composition of dust parti-cles on the leaves of apricot trees (Prúnus armeníaca) in the residential zone of Volgograd. The novelty of the work lies in the study of the dispersed composition of dust particles on the leaves of apricot trees (Prúnus armeníaca) in the residential zone in the city of Volgograd near the construction industry enterprise, me-chanical engineering, leather production and railway transport line in comparison with the conditionally clean (control) zone of the SNT “Orocenets” ”(Sovetsky District, Volgograd) from the standpoint of random functions expressed by integral distribution curves of the mass of particles over their equivalent diameters. As a result of the research, the dispersed composition of dust on the leaves of apricot trees (Prúnus ar-meníaca) in the residential area of Volgograd was revealed. Fine particles were found: PM2.5, PM10 in each of the studied points, which by their values, both in their number and mass fraction, significantly exceed the data on fine dust in a conditionally clean area (control) in the SNT “Oroshanets” (Sovetsky district Volgo-grad), which creates certain environmental risks for local residents. The dispersed analysis of particles from the standpoint of random functions in the future will allow with a sufficiently high degree of accuracy to pre-dict the dust content of urban atmospheric air in the range of monthly and / or seasonal average values compared to the traditional measurement of fine dust concentration in atmospheric air of the urban environ-ment as the maximum single or daily average. At the same time, further studies of dust on the leaves of plants in an urban environment, namely, the study of the density of its sedimentation, will also reveal a group of ur-ban plants that are best suited to retain PM2.5 and PM10 on leaf plates in this region, which can significantly increase the quality of the atmospheric air of the urban environment and be of a recommendatory nature for the state-owned landscaping services of the city of Volgograd when improving the green areas of a megacity.


1984 ◽  
Vol 75 ◽  
pp. 597
Author(s):  
E. Grün ◽  
G.E. Morfill ◽  
T.V. Johnson ◽  
G.H. Schwehm

ABSTRACTSaturn's broad E ring, the narrow G ring and the structured and apparently time variable F ring(s), contain many micron and sub-micron sized particles, which make up the “visible” component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. It is suggested that the extent of the E ring and the braided, kinky structure of certain portions of the F rings as well as possible time variations are a result of plasma induced electromagnetic perturbations and drag forces. The G ring, in this scenario, requires some form of shepherding and should be akin to the F ring in structure. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 102to 104years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.


Author(s):  
J. R. Porter ◽  
J. I. Goldstein ◽  
D. B. Williams

Alloy scrap metal is increasingly being used in electric arc furnace (EAF) steelmaking and the alloying elements are also found in the resulting dust. A comprehensive characterization program of EAF dust has been undertaken in collaboration with the steel industry and AISI. Samples have been collected from the furnaces of 28 steel companies representing the broad spectrum of industry practice. The program aims to develop an understanding of the mechanisms of formation so that procedures to recover residual elements or recycle the dust can be established. The multi-phase, multi-component dust particles are amenable to individual particle analysis using modern analytical electron microscopy (AEM) methods.Particles are ultrasonically dispersed and subsequently supported on carbon coated formvar films on berylium grids for microscopy. The specimens require careful treatment to prevent agglomeration during preparation which occurs as a result of the combined effects of the fine particle size and particle magnetism. A number of approaches to inhibit agglomeration are currently being evaluated including dispersal in easily sublimable organic solids and size fractioning by centrifugation.


Author(s):  
E. C. Buck ◽  
N. L. Dietz ◽  
J. K. Bates

Operations at former weapons processing facilities in the U. S. have resulted in a large volume of radionuclidecontaminated soils and residues. In an effort to improve remediation strategies and meet environmental regulations, radionuclide-bearing particles in contaminant soils from Fernald in Ohio and the Rocky Flats Plant (RFP) in Colorado have been characterized by electron microscopy. The object of these studies was to determine the form of the contaminant radionuclide, so that it properties could be established [1]. Physical separation and radiochemical analysis determined that uranium contamination at Fernald was not present exclusively in any one size/density fraction [2]. The uranium-contamination resulted from aqueous and solid product spills, air-borne dust particles, and from the operation of an incinerator on site. At RFP the contamination was from the incineration of Pu-bearing materials. Further analysis by x-ray absorption spectroscopy indicated that the majority of the uranium was in the 6+ oxidation state [3].


2010 ◽  
Vol 13 (3) ◽  
pp. 5-20
Author(s):  
Loc Duc Nguyen

The Vietnamese Catholic community is not only a religious community but also a traditional village with relationships based on kinship and/or sharing the same residential area, similar economic activities, and religious activities. In this essay, we are interested in examining migrating Catholic communities which were shaped and reshaped within the historical context of Viet Nam war in 1954. They were established after the migration of millions of Catholics from Northern to Southern Viet Nam immediately after Geneva Agreement in 1954. Therefore, by examining the particular structural traits of the emigration Catholic Communities we attempt to reconstruct the reproducing process of village structure based on the communities’ triple structure: kinship structure, governmental structure and religious organization.


2003 ◽  
Vol 9 (4) ◽  
pp. 67-72 ◽  
Author(s):  
Yu.O. Klymenko ◽  
◽  
О.К. Cheremnykh ◽  

Sign in / Sign up

Export Citation Format

Share Document